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Abstract— Hybrids systems are combinations of continuous
and discrete systems. The bouncing ball is an extensively studied
hybrid system, for which many solid Lyapunov-based tools are
now available. Toward applying these tools to walking robots,
where a hybrid dynamical system framework is also a natural
fit, the rimless wheel provides a salient dynamic model because
it shares commonalities with both bouncing balls and two-
legged robots. While much of existing locomotion research is
based on Poincaré analysis, in this paper we also study the
rimless wheel using Lyapunov-based tools. Our results motivate
future use of Poincaré maps for certain hybrid systems and
Lyapunov-based tools for more complicated walkers.

I. INTRODUCTION

Many dynamic systems cannot be modeled by continuous
or discontinuous models alone. Hybrid dynamical systems
may exhibit both continuous and discrete dynamics [1],
[2], [3]. There are numerous examples, but arguably the
most well-known one is a bouncing ball [4], [5]. Many
aspects of this example have been studied extensively and
are readily applicable to more complicated systems [6]. Of
particular interest to the authors, hybrid systems research is
very promising in the field of walking robots [7], for which
swinging of a leg has continuous dynamics, whereas impacts
are well-modeled as discrete events.

In this paper we study the rimless wheel, shown in Fig-
ure 1. After Tad McGeer’s introduction of passive dynamic
walking in [8] over two decades ago, the rimless wheel
has become very popular in locomotion research due its
simplicity while keeping many of the essential properties
of walking robots. Most analyses have focused on limit
cycles to determine if a given walking motion is locally
stable [9]. Furthermore, results on the rimless wheel can
be used to stabilize more complicated walkers [10], [11],
[12]. These works show the similarities between the rimless
wheel and simple walkers consisting of two legs. The rimless
wheel abstraction can also be extended to include actuated
spokes [13], [14] and/or 3D dynamics [15], [16].

Although the rimless wheel’s connection to underactu-
ated walking models has been noted by many locomotion
researchers, its similarities with the classic bouncing ball
model are not yet widely acknowledged in the literature, to
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Fig. 1. The rimless wheel as depicted in [17]. We define forward direction
to be to the right (i.e., clockwise) .

our knowledge. This is important because the bouncing ball
is well-studied by control theory researchers, as mentioned.
As we demonstrate in this paper, the rimless wheel is a
bridge between the bouncing ball and dynamic walkers. To
illustrate, in all three examples, when the contact point of
interest is above the ground we have continuous dynamics
regulated by gravity. These dynamics are interrupted by
impact events when that point contacts the ground. However,
for the bouncing ball one usually studies the stability of
stopping on a platform, while the focus for walkers is on
stability of walking, i.e., not stopping. In this paper, we study
the stability of both stopping and walking of the rimless
wheel to make the connection.

We look at the rimless wheel in two different ways.
One approach investigates the full dynamics in terms of
Lyapunov stability. This method is very general and widely
used by control theory researchers. The second method
involves Poincaré maps, which is a common approach used
to study stability of nonlinear, limit cycle behaviors in
walking robotics research [16], [18]. A Poincaré map reduces
a continuous-time dynamic system by one degree and rep-
resents it as a discrete-time one, from which we can derive
some information regarding the full dynamics. Arguably, the
second method is easier to apply, but there is some loss
of information which may or may not be important to the
analysis. For both the Lyapunov and Poincaré analyses that
we carry out, we study dynamic behavior on both flat (or
constant-incline) terrains and changing (stochastic) slopes.

This paper aims to motivate control theory researchers
to study the problem of controlling walking robots and
locomotion researchers to employ existing tools within the
hybrid systems field. It is a step towards closing the gap
by showing that Lyapunov stability is also applicable to
locomotion research and introducing a motivating example
to hybrid systems researchers.



II. MODEL

Figure 1 illustrates the rimless wheel on an inclined
terrain. When the slope is zero, i.e., γ = 0, the terrain is
said to be flat. We assume the mass m is lumped into the
center of the robot. The length of each leg is given by l,
whereas each inter-leg angle is 2α = 2π/N , with N being
the number of legs. For simplicity we will assume l = 1m
and m = 1kg. The gravitational acceleration ζ will be taken
to be 9.81m/s2. We will work with N ≥ 5, since N ≤ 4
results in the velocity vector of the mass at impact being
directed between the two contact points on the ground, which
is not so useful for a rolling analysis.

The N = 8 case is shown in Figure 1, which also depicts
angle θ. In this paper we will have |γ| < π/2 and we assume
that legs never slip, i.e., the friction is always enough.

The single support phase is when only one leg is in con-
tact with the ground. This phase has continuous pendulum
dynamics: θ̈ = ζsin(θ). The leg in contact with the ground is
referred to as the stance leg. On the other hand, double sup-
port phase is when two legs are in contact with the ground.
This is well described as an instantaneous impact event.
The jump map is obtained using conservation of momentum:
w+ = cos(2α)w, where w = θ̇ is the angular velocity [8].
Thus, the rimless wheel is a hybrid dynamic system. Walking
is single and double support phases following one another.
A step occurs between two consecutive impacts and includes
one of these impacts. (In this paper, we will arbitrarily define
it to include the first of the two impacts.) Stopping will refer
to velocity becoming and staying zero. Failing will mean not
being able to take another step.

III. LYAPUNOV STABILITY ANALYSIS

A. Flat terrain

We will first consider flat terrain, i.e. when γ = 0. The
state of the robot consists of the angle θ and angular velocity
ω = θ̇, i.e.,

x =

[
x1

x2

]
=

[
θ
w

]
∈ R2. (1)

Having none of the legs below the ground level corresponds
to the set

C0 = {x ∈ R2 : −α ≤ x1 ≤ α}. (2)

during which the robot will follow the pendulum dynamics:

ẋ = f(x) =

[
x2

ζsin(x1)

]
. (3)

A jump happens when two legs are in contact with the
ground, and the dot product of the velocity of the mass with
the normal vector pointing into the terrain is positive. The
state is then in the jump set given by

D = {x ∈ R2 : x1 = −α, x2 ≤ 0 or x1 = α, x2 ≥ 0}.
(4)

For flat terrain, the jump map is given by

x+ = g(x) =

[
−x1

cos(2α)x2

]
. (5)

The instantaneous change of θ is due to relabeling of the
stance leg.

Next, note that (0, 0) is an unstable equilibrium point for
the flow map. Also, there exist initial conditions outside the
origin that will arrive exactly at the origin (in infinite time).
However, this is not particularly interesting nor useful for
our study in this paper. So, we define the flow set as

C = {x ∈ R2 : −α ≤ x1 ≤ α,
√
x2

1 + x2
2 ≥ r}, (6)

where r > 0 is small. Note that the new flow set is obtained
from the set in (2) by removing an open ball with radius r
centered at the origin.

For this system, we will study the stability of the set

A = {−α, α} × {0}. (7)

Physically, this set corresponds to two feet touching the
ground and having zero velocity (stopping). Consider the
Lyapunov function candidate

V (x) =
1

2
x2

2 + ζ(cos(x1)− cos(α)), (8)

which represents the total energy. For x ∈ C ∪D, V (x) = 0
requires x ∈ A and V (x) > 0 for x 6∈ A because −α ≤
x1 ≤ α. V (x) also goes unbounded as x2 goes unbounded.
During the flows V is constant

〈∇V (x), f(x)〉 = x2ẋ2 − ζsin(x1)ẋ1 = 0, (9)

which is expected since it represent the total energy. Also,
jumps do not cause an increase, because

V (g(x))− V (x) = −1

2
(1− cos2(2α))x2

2 ≤ 0. (10)

The case in which V stays constant (does not decrease)
occurs only when x2 = 0. But x2 = 0 at jumps (x ∈ D)
means x ∈ A. To prove uniform global asymptotic stability
of A (See Appendix for definition), we will use Matrosov
functions for hybrid systems defined in the Appendix and
explained in [19]. Starting with V (x) we have a decrease in
jumps for x 6∈ A and non-increasing flows. We then define
V2(x) := −x1x2 to get

〈∇V2(x), f(x)〉 = −ζx1sin(x1)− x2
2 < 0 for x ∈ C (11)

Then A is uniformly globally asymptotically stable (UGAS).

B. Inclined Terrain

Next, we look at the more general case where −α < γ <
α. Remember that α ≤ π/5 since we assume N ≥ 5 in this
paper. We first define β1 := γ − α and β2 := γ + α. Then,
the flow set is given by

C = {x ∈ R2 : β1 ≤ x1 ≤ β2,
√
x2

1 + x2
2 ≥ r}, (12)

where r is small, and the jump set is

D = {x ∈ R2 : x1 = β1, x2 ≤ 0 or x1 = β2, x2 ≥ 0}.
(13)



During flows, the system will continue acting as a pendulum
as given in (3). However, the jump map given needs to be
modified as

x+ = g(x) =

[
−x1 + 2γ
cos(2α)x2

]
(14)

Figure 2 illustrates the state space of the robot and some
typical trajectories. Note the trajectory heading to the origin
stops flowing.

x1

x2
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D
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Fig. 2. State space and Poincaré section for rimless wheel when γ > 0.
The vertical line at x1 = 0 is when the rimless wheel is upright (θ = 0 in
Figure 1). Open ball at the origin with radius r is not part of the flow set.
Also, in reality (β1, x2) and (β2, x2) correspond to the same point. For
the trajectories, solid lines represent flows, whereas the dashed lines show
jumps.

We will next consider the stability of

A = {β1, β2} × {0} (15)

on inclined terrain. To bookkeep where the next impact with
the ground will occur we introduce variable ρ. If the next
impact will be to the right (left), ρ will be 1 (-1). Otherwise,
the walker will head toward the origin and exit the set C∪D
as in Figure 2. In this case it will not be relevant whether ρ
is 1 or -1. We define

V3(x) :=
1

2
x2

2 + ζ(cos(x1)− 1), (16)

which is obtained by offsetting V to be zero at the origin.
Then ρ variable can be calculated using

ρ =

{
sgn(x1) if V3(x) < 0,

sgn(x2) if V3(x) ≥ 0.
(17)

So, if the robot does not have enough energy to overcome
the upright position, it will have the impact on the half
where it already is. Otherwise the velocity direction will
determine which side the robot will hit. Just like V (x), V3(x)
is constant during flows. If V3(x) < 0, then the robot will
not be able to pass through the x1 = 0 line, so sgn(x1) will
not change. Otherwise (if the robot has enough energy to
reach the x1 = 0 line), the robot will not fall back and the
velocity will always be in the same direction. As a result, ρ
is constant during flows.

With ρ defined, we consider the Lyapunov function V4

given by

V4(x) =

{
1
2x

2
2 + ζ(cos(x1)− cos(β1)) if ρ = −1,

1
2x

2
2 + ζ(cos(x1)− cos(β2)) if ρ = 1.

(18)

V4 corresponds to the total energy with respect to the next
impact point. In other words, V4 is V shifted by a constant
such that it will have zero potential energy at the next impact.
Since ρ will not change during flows, V4(x) is continuous
and continuously differentiable during flows.

When V3(x) ≥ 0, we have x2
2/2 ≥ ζ(1 − cos(x1)). This

implies

V4(x) ≥ ζ(1− cos(β1)) > 0 if ρ = −1,

V4(x) ≥ ζ(1− cos(β2)) > 0 if ρ = 1,
(19)

because −α < γ < α. On the other hand, if V3(x) < 0, then
x1 6= 0, because x2/2 ≥ 0. In this case (18) implies

V4(x) ≥ 1

2
x2

2 + ζ(cos(x1)− cos(β1)) if x1 < 0,

V4(x) ≥ 1

2
x2

2 + ζ(cos(x1)− cos(β2)) if x1 > 0,
(20)

where right hand-sides are positive for x 6∈ A, because β1 ≤
x1 ≤ β2.

So V4(x) > 0 for x 6∈ A and V4(x) = 0 implies x ∈ A.
Furthermore, we have unboundedness of V4(x) as x2 goes
unbounded and the flows still do not change the value of
V4 as in (9). We then look at jumps, where we either have
x1 = β1 or x1 = β2.

1) Jump at x1 = β2: In this case we have ρ = 1.
If V3(g(x)) < 0, then ρ+ = −1 because x+

1 = β1.
This corresponds to the robot not being able to take another
forward step and falling back. Then,

V4(g(x))− V4(x) = −1

2
x2

2(1− cos2(2α)) < 0. (21)

On the other hand, V3(g(x)) ≥ 0 means

V3(g(x)) =
1

2
cos2(2α)x2

2 + ζ(cos(β1)− 1) ≥ 0, (22)

or equivalently

x2 ≥
√

2ζ(1− cos(β1))/cos2(2α) =: xthr12 > 0. (23)

So, in this case we have ρ+ = 1. Using (22) we obtain

V4(g(x))−V4(x) = −x
2
2

2
(1− cos2(2α))+ ζ(cos(β1)− cos(β2))

≤ −ζ
cos2(2α)

(−cos2(2α)(1− cos(β2)+(1− cos(β1))
(24)

which is negative when

1− cos(β1)

1− cos(β2)
> cos2(2α). (25)

This is satisfied when the slope is smaller than some thresh-
old value, i.e., γ < γthr.



2) Jump at x1 = β1: Using similar arguments we con-
clude that V4(g(x))− V4(x) < 0 for

1− cos(β2)

1− cos(β1)
> cos2(2α), (26)

which corresponds to having −γthr < γ.
So if −γthr < γ < γthr, then we have decrease in jumps.

Using functions V4(x) and V2(x) = −x1x2 we establish
uniform global asymptotic stability as in (11).

On the other hand, let’s consider all 0 ≤ γ < α. For
V3(g(x)) ≥ 0 we note from the first line of (24) that
smaller x2 means larger V4(g(x))− V4(x). In fact, we have
V4(g(x)) > V4(x) for

x2 <

√
2ζ(cos(β1)− cos(β2))

1− cos2(2α)
=: xthr22 ≥ 0. (27)

xthr12 and xthr22 are plotted on Figure 3, where N = 8 is
assumed and y-axis is the x2 at the impact. γthr (= 3.909◦

for N = 8) is where the two lines meet. Below the xthr12

line, V3(g(x)) < 0 and jump results with a decrease in V4 for
x2 6= 0 as in (21). However, points above the xthr12 line will
tend to the xthr22 line vertically. This is because if xthr12 <
x2 < xthr22 , there will be an increase and if x2 > xthr22 ,
there will be a decrease in V4 from (24). The reason why A
is UGAS for 0 ≤ γ < γthr is because xthr22 < xthr12 in this
region. The case when −α < γ < 0 is similar.
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Fig. 3. xthr12 versus xthr12 for 0 ≤ γ ≤ 10◦. x2 = 117.1 corresponds
to the fixed point for γ = 8◦ in Poincaré map as we will see later.

As a side note, when α < |γ| < π/2, the robot will keep
walking forever, no matter what the initial condition is. This
corresponds to cases in which the center of mass will always
lie outside the support polygon.

Finally, some approximate γthr values depending on N
are given in Table I. When N = 4, we have cos(2α) = 0.
So a jump will cause velocity to become zero and any slope
satisfying −α < γ < α would preserve stability. Note that
as N → ∞, cos(2α) → 1 (impacts cause no energy loss)
and we have a wheel, rolling forever

TABLE I
APPROXIMATE THRESHOLD SLOPES IN DEGREES

N 4 5 6 7 8 1e3
≈ γthr 45 19.464 10.207 6.060 3.909 1.776×10−6

C. Changing Slopes

Next, we allow the slope to change at every jump. While
flowing, the system will have a particular slope in front,
which we will refer to with our original symbol, γ. In
addition, the slope on the back (to the left) will be denoted
by γb. In this case, we redefine β1 := γb − α and the state
becomes four dimensional, i.e.,

x =


x1

x2

x3

x4

 =


θ
w
γ
γb

 ∈ R4. (28)

After redefining β1, the flow and jump sets will remain as
given in (12) and (13), except we will have x ∈ R4. The
flow and jump maps will remain the same for x1 and x2. In
addition we have γ̇ = 0, γ̇b = 0 and

[
γ+

γ+
b

]
=



[
γb

γnew

]
if x1 = β1,[

γnew

γ

]
if x1 = β2,

(29)

where γnew is a random variable, drawn at each impact.
We adopt the Lyapunov function in (18) and look at

the stability of A = {β1, β2} × {0}. Assume γnew ∈
(−γthr, γthr), where γthr is as calculated in the previous
section. As a result,

1− cos(β2)

1− cos(β1)
>

1− cos(−γthr + α)

1− cos(−γthr − α)
= cos2(2α) (30)

1− cos(β1)

1− cos(β2)
>

1− cos(γthr − α)

1− cos(γthr + α)
= cos2(2α) (31)

So we still have decrease at jumps when x 6∈ A, as in
(24). Using the same Matrosov functions of the previous
section we conclude that A = {β1, β2}×{0} is still UGAS,
given γnew ∈ (−γthr, γthr). If γnew ∈ (γthr, π/2), then with
appropriately enough forward energy, the robot will always
walk. What is even more interesting is what happens when
such guarantees on γnew cannot be made. We address this
issue next.

D. Stochastic Terrain

In this section, we look at the stochastic terrain problem
and apply tools presented in [20]. As N ≤ 4 is a trivial case,
we will look at N ≥ 5, but finite. We will assume γnew
is generated by an independent and identically distributed
(i.i.d.) sequence of random variables, which also generate a



probability distribution µ. We will assume the support of this
distribution is the set of angles between −π/2 and π/2, i.e.,

µ((−π/2, π/2)) = 1. (32)

We further assume that

cos2(2α) <

∫
R

1− cos(γnew + α)

1− cos(γnew − α)
µ(dγnew) < 1/cos2(2α).

(33)
We then consider the Lyapunov function V4(x) defined in
(18). As before, we have non-increasing flows. Moreover,
if x1 = β1 or x1 = β2, we may have an increase or
decrease at a single jump with constraint (33). However, we
wish to consider the behavior when γnew is generated by
an independent and identically distributed (i.i.d.) sequence
of random variables. In this case, if x1 = β2 and ρ+ = 1,
then ∫

R
(V4(g(x))− V4(x))µ(dγnew)

≤ −ζ
cos2(2α)

∫
R

1

(1− cos(γnew + α))(
1− cos(γnew − α)

1− cos(γnew + α)
− cos2(2α)

)
µ(dγnew),

(34)

which is negative for the assumption in (33). We similarly
obtain negativeness for x1 = β1 case too. We repeat the
Matrosov analysis carried in the previous parts and then refer
to [20] to conclude set A is UGAS in probability.

IV. POINCARÉ MAP STABILITY

In the previous section, we studied Lyapunov stability of
the full hybrid dynamics of the rimless wheel. Remember
that the state space of the robot is shown in Figure 2.
Now, we will first select a Poincaré section. Although there
are numerous other possibilities, we found choosing the
(vertical) line x1 = 0 to be most helpful. We will restrict
our attention to forward motion, which will make analysis
easier while not losing any point we want to show. We will
be working on the system described for changing slopes. The
emphasis in this section will be on the stability of walking.
We will also assume −π/2 < γ < π/2 and the robot starts
in x1 = 0 position with x2 > 0. This initial velocity is
denoted by w0. More generally, wn denotes the velocity after
n steps are taken. Given, wn > 0 and wn+1 ≥ 0, we have
the following relationship

wn+1 =
√
cos2(2α)(w2

n + 2ζ(1− cosβ2))− 2ζ(1− cosβ1)
(35)

as shown in [17], which can be easily verified using the
conservation of energy during the flows and conservation of
angular momentum at the impacts. If the argument of the
square root in the equation above is negative, then the robot
did not actually intersect the Poincaré section again. This
means it fell back, which will imply stability of stopping at
the impact points as we saw. If, on the other hand, wn+1

turns out to be zero, that means the robot stopped at the
upright position. In either of these cases, the robot will not
be able to take another step (the robot simply failed), so we

stop iterating (35). Moreover, substituting wn+1 = wn > 0
gives γ > γthr, where γthr is as calculated before. In this
case, the solution of the full dynamics converges to a limit
cycle because the reduced dynamics converge to a fixed point
as we show shortly.

Note that we look at forward walking only, thus the state
is three dimensional (position, velocity and slope). Starting
with a hybrid system and taking a Poincaré section we
reduced this dimension to two. If the slope is constant, we
have a 1D discrete system. If the slope is generated by some
distribution, then we have a 1D Markov chain. For stable
walking, the robot needs to keep passing though the Poincaré
section. From the previous section we also know that not
going through this line after some time means stopping.

Assuming wk > 0 for k = {0, 1, ..., n} and using (35)
iteratively, we can write

w2
n = ηnw2

0 + 2ζ

n−1∑
k=0

ηn−1−kψn, (36)

where η = cos2(2α), ψk = η(1−cos(γk+α))−(1−cos(γk−
α)) and γk is the slope before (k + 1)th impact. The robot
will keep walking as long as wn > 0. It is destined to stop
when wn ≤ 0 for some n. Having ψ < 0 corresponds to
γ < γthr, which guarantees stability of stopping as we saw
previously and can also verify by taking limit as n → ∞
in (36). On the other hand, having

∑∞
k=0 η

n−1−kψn < 0
is also sufficient for stability of stopping, because ηn → 0
as n → ∞. It is also easy to see that ψn > 0 will result
in stable walking with w0 > 0. In particular, when slope is
fixed, we have ψ = ψn constant. Then,

w2
n = ηnw2

0 + 2ζψ
1− ηn

1− η
. (37)

As n → ∞, we have w2
n = 2ζψ/(1 − η), which shows

there is a limit cycle. It is also important to note that initial
condition vanishes as the robot takes steps. To the authors’
experience, walking robots “almost forget” initial conditions
within several steps, given they haven’t stopped.

A. Metastability

As in the section on Lyapunov stability, we end this section
looking at stochastic terrain. Remember in section III-D, we
saw that (33) is a sufficient condition for A being UGAS.
However, note that (33) not holding does not mean the
origin A is not UGAS. In such cases, we wish to know
how many steps are expected to be taken before failing
(not intersecting Poincaré section with positive velocity).
This term corresponds to Mean First Passage Time (MFPT)
of [17] as we explain next.

The method in [17] requires finite and discrete slope and
state sets. For the slope set we will use

Γ = {γ ∈ R : γ = (k − 1)◦/10, k ∈ Z, 1 ≤ k ≤ 161}.
(38)

And the state set will be

W = {w ∈ R : w = (k − 1)/100, k ∈ Z, 1 ≤ k ≤ 251}.
(39)



Let us adopt the following notation γ{k} := (k− 1)/10 and
w{k} := (k − 1)/100. w{1} will represent the absorbing
failure state. Both sets can be made denser for higher
accuracy or coarser for faster computation. Because of low
dimensionality, computation time is very small (less than a
second). Also, the accuracy gained while calculating MFPT
with denser sets was negligible. For the issue of dealing with
higher dimensional systems see [21], [22].

After determining these sets, what is done is to calculate
wn+1 for each wn ∈ W \ {w{1}} and γ ∈ Γ. While doing
so, we say wn+1 = w{1} if wn+1 does not turn out to be
positive real. We define the closest point in set W to a point
w̃ as

c(w̃,W ) := argmin
w∈W

(w − w̃)2 (40)

Let h(wn, γ) denote the right hand side of (35) when it is
real, and h(wn, γ) = 0 if not. We then get the deterministic
state transition map calculated by

Td{ij}(γ) =

{
1, if w{j} = c(h(w{i}, γ),W )

0, otherwise.
(41)

Next, we define the stochastic state transition matrix as

Ts{ij} := Pr(wn+1 = w{j} | wn = w{i}). (42)

Let PΓ(γ{k}) denote the probability of slope being γ{k}.
Then the stochastic state transition matrix can be calculated
by

Ts =
∑

γ{k}∈Γ

PΓ(γ{k}) Td(γ{k}) (43)

Given the stochastic state transition matrix, the average
steps to failure, or Mean First Passage Time (MFPT), is

M =
1

1− λ2
(44)

where λ2 is the second largest eigenvalue of Ts. For details,
we refer interested reader to [23], [17].

To illustrate, we will assume normal distribution for
slopes, i.e., γ{k} ∼ N (µ, σ2), where µ is the mean and σ is
the standard deviation. For each µ and σ we get a MFPT as
shown in Figure 4. As mean increases and standard deviation
decreases the MFPT rises. This is expected since in this case
small slopes occur less frequently.

V. CONCLUSION

In this paper we studied the rimless wheel. This is
a hybrid dynamical system, since it has both continuous
and discontinuous dynamics. We showed uniform global
asymptotic stability of stopping with two legs in contact
with the ground using a Lyapunov-based approach. We also
showed that a Poincaré section method is an easy but useful
alternative tool. We derived results verifying what is learned
with the Lyapunov based approach. For both approaches,
we also looked at the stochastic terrain case. Metastability
analysis showed that for a robot destined to fail taking steps
eventually, the mean number of steps taken is a very useful
measure.
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Fig. 4. Mean First Passage time as a function of slope distribution

APPENDIX - HYBRID SYSTEMS REVIEW

In this section we will provide definitions for hybrid
systems explained in [6], [19] to be self-contained. We begin
with some notation.

Let S be a set for the following notations. S denotes the
closure of S. Given a point x ∈ Rn, |x|S := infy∈S |x− y|.
For constants 0 ≥ δ ≥ ∆, ΩS(δ,∆) := {x ∈ Rn : δ ≤
|x|S ≤ ∆}. A function α : R≥0 → R≥0 belongs to class-
K∞ if it is continuous, zero at zero, strictly increasing, and
unbounded.

A set-valued mapping M from S1 ⊂ Rm to S2 ⊂ Rn,
denoted by M : S1 ⇒ S2, associates every point x ∈ S1 to
a subset of S2. The domain of M : S1 ⇒ S2 is given by

dom M = {x ∈ S1 : M(x) 6= ∅}. (45)

We will represent hybrid systems in Rn in the following
form

ẋ ∈ F (x) x ∈ C
x+ ∈ G(x) x ∈ D

(46)

where x ∈ Rn is the state, C ⊂ Rn is the flow set, D ⊂ Rn
is the jump set, F : Rn ⇒ Rn with C ⊂ dom F is the flow
map and G : Rn ⇒ Rn with D ⊂ dom G is the jump map.
Note that ẋ = f(x) and x+ = g(x) are special cases for this
setting, where f and g are functions.

Set E ⊂ R≥0 × N is a compact hybrid domain if

E =

J−1⋃
j=0

([tj , tj+1]× {j}) (47)

for some finite sequence of times 0 = t0 ≤ t1 ≤ t2 ≤
... ≤ tj . E is a hybrid time domain if for each (T, J) ∈ E,
E∩ ([0, T ]×{0, 1, ..., J}) is a compact hybrid time domain.

A function φ : E → Rn is a hybrid arc if E is a hybrid
time domain and t 7→ φ(t, j) is locally absolutely continuous
for each j ∈ N. It is complete if dom φ is unbounded.



A solution to the hybrid system in consideration is a hybrid
arc φ : dom φ→ Rn such that

1) if (t1, j), (t2, j) ∈ dom φ with t2 > t1, then for almost
all t ∈ [t1, t2], φ(t, j) ∈ C and φ̇(t, j) ∈ F (φ(t, j)).

2) if (t, j), (t, j + 1) ∈ dom φ, then φ(t, j) ∈ D and
φ(t, j + 1) ∈ G(φ(t, j)).

A compact set A ⊂ Rn is

• uniformly globally stable (UGS) if there exists a class-
K∞ function α such that any solution φ satisfies
|φ(t, j)|A ≤ α(|x(0, 0)|A) for all (t, j) ∈ dom φ

• uniformly globally attractive (UGA) if for each ε > 0
and r > 0 there exists T > 0 such that, for any solution
φ, |φ(0, 0)|A ≤ r, (t, j) ∈ dom φ and t+ j ≥ T imply
|φ(t, j)|A ≤ ε

• uniformly globally asymptotically stable (UGAS) if it
is both UGS and UGA.

The closed set A ⊂ Rn is uniformly globally stable
if there exists a function V : Rn → R≥0 continuously
differentiable on an open set containing C and

V (x) = 0⇔ x ∈ A and V (x)→∞ as |x| → ∞
〈∇V (x), f(x)〉 ≤ 0 ∀x ∈ C, f ∈ F (x)

V (g)− V (x) ≤ 0 ∀x ∈ D, f ∈ G(x)

(48)

(hybrid nested Matrosov) A compact and uniformly glob-
ally stable set A ⊂ Rn is uniformly globally asymptotically
stable if there exists m ∈ Z≥1 and for each 0 < δ < ∆

• a number µ > 0
• continuous functions uc,i : C ∩ ΩA(δ,∆) → R, ud,i :
D ∩ ΩA(δ,∆)→ R, i = {1, ...,m}

• functions Vi : RnA → R, i = {1, ...,m}, continuously
differentiable on an open set containing C ∩ΩA(δ,∆),
such that for each i = {1, ...,m},

|Vi(x)| ≤ µ ∀x ∈ (C ∪D ∪G(D)) ∩ ΩA(δ,∆)
(49)

〈∇V (x), f(x)〉 ≤ uc,i(x) ∀x ∈ C ∩ ΩA(δ,∆)

∀f ∈ F (x)
(50)

Vi(g)− Vi(x) ≤ ud,i(x) ∀x ∈ D ∩ ΩA(δ,∆)

∀g ∈ G(x) ∩ ΩA(δ,∆)
(51)

and, with the definitions uc,0, ud,0 : Rn → {0} and
uc,m+1, ud,m+1 : Rn → {1}, we have for each j ∈
{0, ...,m},

1)if x ∈ C∩ΩA(δ,∆) and uc,i(x) = 0 for all i ∈ {0, ..., j}
then uc,j+1(x) ≤ 0,

2)if x ∈ D ∩ ΩA(δ,∆) and ud,i(x) = 0 for all i ∈
{0, ..., j} then ud,j+1(x) ≤ 0.
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