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Abstract—For an underactuated biped on a constant-slope
terrain, the Hybrid Zero Dynamics (HZD) controller frame-
work provides exponentially stable walking motions. In this
paper, we quantify the stability of such a control system
on rough terrain by estimating the average number of steps
before failure. In addition, we show how to switch between
multiple HZD controllers (optionally using terrain look-ahead)
to increase the stability dramatically, e.g., 10 thousand steps
compared to 10. To do this robustly, we make use of the new
meshing method proposed in this paper.

I. INTRODUCTION

Humans can benefit from humanoids in many ways. A
major challenge in developing human-like robots is obtain-
ing bipedal locomotion what is both energy efficient and
stable. Toward this goal, passive walkers [1] have motivated
dynamic walking, where underactuation is not avoided as
in humans. In this paper we study a 5-Link planar biped
with point feet that are modeled as unactuated, free pivots.
This robot has hybrid dynamics, i.e., it experiences both
continuous phases and discontinuous jumps [2]. For this
walker on flat terrain, [3] provides a systematic design of
a Hybrid Zero Dynamics (HZD) controller, which achieve
stable walking motions. However, our simulations show that
such a strategy will fail with several steps if even mild
variability is added to the terrain profile. For such cases,
e.g., on rough terrain, one needs to quantify stability. An
intuitive approach is estimating the average number of steps
before falling, aka the Mean First Passage Time (MFPT)
before failure [4].

In this paper we first show how to design a HZD controller
for constant-inclined terrain by slightly modifying [3]. After
that, we have two main goals in this paper as follows.

1) Estimating MFPT: In [5] we showed how to estimate
MFPT for any controller. Our method involves starting from
the limit cycle walking motion to explore and mesh the
reachable part of the state space. In this paper, in addition
to applying the same method, we propose an alternative
algorithm for HZD controllers. The latter will not be as
accurate, however computational cost will be significantly
lower due to the elegance of the HZD formulation.

2) Increasing MFPT: Again, in [5] we showed how to
switch between multiple controllers designed a priori to
increase the MFPT significantly. Our motivation is the fact
that humans modify their motion while walking on rough
terrain. Our method, based on the mesh mentioned in the
previous paragraph, can also make use of the upcoming
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terrain information. In [5], we addressed the problem of noisy
slope estimation. We also introduced the mesh-robustness
problem by evaluating the performance of a policy obtained
with a mesh approximation of the true dynamics. In the
mentioned work, both meshes were obtained using the same
method. Ensuring mesh-robustness was not obvious and our
previous solution was ad-hoc. In the current paper, we will
show how to achieve the same goal easily using the new
meshing method proposed in this paper.

II. MODEL

A. The Biped

Figure 1 shows the 5-Link model of RABBIT [6].
We assume point feet. Ankles are not actuated, and this
model has 1 DOF underactuation. The angles are given by
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Fig. 1. TIllustration of the five-link robot with identical legs. As we will
explain later, s is the slope ahead of the robot, 0 is called the phase variable,
and [ is angle from stance foot to swing foot.

Walking consists of steps. A step has two phases. In the
single support (swing) phase, the robot will have only one
leg (stance leg) in contact with the ground. The dynamics
are described by

D(q)G + C(q,4)q + G(q) = Bu, (1)

where u is the input. This equation can be obtained by a
Lagrangian approach. By defining the ten dimensional state
as * = [¢7 ¢T]T, same dynamics can be equivalently
expressed as

i = f(2) + g(0)u. @)

A swing phase starts and ends with a double support phase,
which can be modeled as an instantaneous impact event by

_ A, q”
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where 2= = [(¢7)T (¢7)T]T and x* are the states just

before and after the impact respectively. Although angular



positions are assumed to stay constant at the impact, we
relabel the stance and swing legs. So, A, is such that we
have Aglgr g2 g3 qu a5]" =2 @1 a1 g3 gs]”. The
function Aj(q) is obtained using conservation of energy and
the principle of virtual work [6], [2].

B. The Terrain

In this paper we assume the terrain ahead of the robot is
a constant slope until an impact occurs. So each step will
experience a slope and the terrain will be angular. As shown
in Figure 1, we will denote the slope by s. This terrain
assumption captures the fact that to calculate the pre-impact
state, the terrain for each step can simply be interpreted as a
ramp with the appropriate slope. Then, the next state of the
robot, z[n + 1], is a function of the current state x[n], the
slope ahead s[n], and the controller used ¢[n], i.e.,

z[n +1] = h(z[n], s[nl, ¢[n]), “)
where superscript ¢t denotes the terrain assumption we made.

III. HZD FOR INCLINED TERRAIN

In this section we summarize the Hybrid Zero Dynamics
(HZD) control for the 5-Link biped explained in [6]. In
addition, we will extend it for inclined (constant-sloped)
terrain as in [7]. This generalization can be made for all
Hybrid Zero Dynamics (HZD) control frameworks. However,
we will follow the specific choices made for 5-Link biped
for clarity and space considerations.

A. The Structure

First, we choose a phase-variable, which will work as
an internal-clock. It should be monotonic through the step,
e.g., hip location moves forward with an almost constant
velocity in humans [8]. We choose 6 shown in Figure 1 as
our phase variable. Since femur and tip lengths are equal in
RABBIT [6], this will correspond to having § = cq, where
c=[-10 —-1/20 —1].

Secondly we decide on four independent variables to
control, namely hg. It is intuitive to control the relative
(internal) angles, i.e., ho = [q1 ¢2 G2 ¢3 q4}T. Then hg is
in the form of hg = Hyq, where Hy = [I4 0].

Thirdly, let hq(f) be the references for hg. Then the
tracking error is given by

h(q) = ho(q) — ha(0) = Hog — ha(cq) )
Taking the first derivative with respect to time we get
. Oh
h=—q¢ 6
9! (6)
which can be equivalently written as
. Oh. Oh
h—ax—%f(@ =:Lih=(Vh, f), (7

where we used the fact that %g(m) = 0. For the clarity of
later equations, we will use the Lie derivative (£) notation.
Then, we have

h=L}h+ LyLsh u. (8)

Substituting the controller structure
u=(LyLsh) " (—=L3h +v) )

to (8) yields

h=w. (10

There are various methods to design v to force h (and h)
to zero [9]. While even a PD controller would do the job,
a Sliding Mode Control (SMC) would be preferable for
finite time convergence [10], which is summarized in the
Appendix.

On the ”zero dynamics manifold”, noted by Z, we have
h = 0 and h = 0. The rest of this section considers the
dynamics on this manifold. The goal is to design hy such
that h and h stay as zero even at impacts (hybrid invariance)
and a stable walking motion is correspondingly generated.

B. Swing Phase Zero Dynamics

Let V be the potential energy of the robot, vo(g) be the
last row of D and define v := voqg. Then, £, = 0 and

Liv=—54 R For z € Z we transform coordinates by

§1 = 07 52 =7, (11)

to equivalently express the system dynamics during the swing
phase as ' )
fl = Cq'7 §2 = ﬁf% (12)

where the right-hand sides are evaluated at

=1 |ha
a=H H

(because &1 = 0 = c¢q and Hoq = hg = hy for z € 2)

on—1
=[5 e
Yo &2
(because i = 0 for x € Z and & = v = 70q)
(13)
To evaluate ¢, we can alternatively differentiate ¢ from above

to get

Ohg7 .
qu—l{al@}e (14)
Using (13) we can write (12) in the following form.
& =r1(6)&, & =ra(&), (15)

C. Hybrid Zero Dynamics Impact

As we will see, hg will be designed such that = € Z
will imply 2+ € Z. Now assume the swing foot passed the
stance foot and had an impact. Such an impact will happen
when 8 = s, cf. Figure 1. Let g; denote the angles just
before the impact. Then, ¢, will be the solution to

49]- )

At the impact, the angles will be relabeled as in (3). So,
after the impact we will have ¢ = A,q; . The phases at
the beginning and end of the step are simply 07 := cqar and
0~ := cqq respectively.

(16)



Similarly let ¢, and ¢4 denote the velocities just before
and after the impact respectively. £, and &5 are the corre-
sponding &, values. Then, using (13) we get

1

i =[me)] e =56

17
Y0(qq ) 1n

From (3), we get ¢; = Ay(qy ) dgand & = volag) 45 -
Defining 8,er0 == Y0(qg) A4(qp) Ag» the impact map on
zero dynamics manifold is given by

gi = 9+a €2+ = Ozero 55

D. Poincaré Analysis

(18)

We then define a Poincaré section just before the impact.
We already know the angles are ¢, . To find the fixed point
on this Poincré map (if it exists), we also need a fixed &, .
Define & 1= £3/2. f;rb and &, will denote its value at the
beginning and end of the step respectively. Then, we have

day _ K2(61)
= ) 19
dgr k1(&1) (1
Integration over a step gives
P
— e+ r2(€1)
o = /9+ ’il(gl)d&' 20

Since impact maps &g, to 5Z2m§2b, the fixed point &3, is
obtained by solving

o
5 — 52261‘0 o = / 2 (51) déq. 21
£2b €2b o+ K](El) 51 ( )
Then, the fixed points for the zero dynamics are
- —2 " k(&)
=07, &= / d&;. 22
61 62 \/1 7 (;ZQCrO P Hl(fl) 51 ( )

E. Constraints

Now using the fixed point as an initial condition, we can
simulate the 2D dynamics described in (12) until § = 6~
and calculate the steady-state Cost of Transport (COT).

Note that this is a brief summary of [3]. There are some
assumptions we made and many constraints we should check
that are not repeated here. For the force constraints, we
should keep in mind to consider the slope. If F~ and F”
are the forces calculated after simulation of the 2D dynamics
as explained in [3], then they should be updated as

Fivaued = FY cos(s) — Fsin(s), (23)
Fqudated = FNsin(s) + FTcos(s).

F. Reference Design

As [3] suggests, we use Bézier polynomials to form
hg and next optimize for COT. While minimizing energy
consumption, hg should satisfy the constraints mentioned
above. In particular, for hybrid invariance, = € Z should
imply ™ € Z, i.e., once the walker is in the manifold it
should stay there.

First, we scale and shift 6 to have an internal clock which
ticks from O to 1 in a step.

0(q) — 0"
0— — o+

Then, Bézier curves are given by

7(q) := (24)

bi( )=§j i Mk ek (2s)
AT —m T

which form the reference as

(1)
ha(0) = E ; . (26)
(1)

Choosing M = 6 yields (6 + 1) x 4 = 28 «, parameters
to optimize. However, hybrid invariance constraint will elim-
inate 2 X 4 = 8 of them. First, assume h = 0 at the impact.
To achieve i = 0 after the impact also, we require

a5 = Dqdy
1 |ao| _1 |
. {94 = Bl {9‘} 27)
Qo _1 |om
] ],
which gives Bézier coefficient oy using apy.
Secondly, it is easy to verify
oh| M
a0 |, - —or T
Ohyg M 28)
B0 |, g g @~ -

Assume h = 0 at the impact. Remember (14). Achieving
h = 0 after the impact means

do = Agla0) do s (29)

or equivalently
L %‘ . L %’ .

H™ [ 891 9+] 0" =AN;(qy) H™ [ 861 0] 6=, (30)
from which we calculate «;.

This section is provided to make paper self contained. The
equations are taken from [3]. The key change we made was
in (16), which allows optimizing for different slopes. Code
is available at MATLAB File Exchange [11] to implement

this control. Optimizing for flat terrain we obtained the
parameters provided in Table I and a COT of 0.18836.

IV. MESHING

Our goal in meshing is to approximate the hybrid dynam-
ics of walking as a Markov Chain. To do so, first we need to
determine a controller set Z, a slope set S and a state set Y.
The controller set is rather easy: it consists of all the available
controllers we choose to design. Z should have at least one
controller. Let (; denote the controller optimized assuming



TABLE I
OPTIMIZED VALUES IN RADIANS FOR MINIMAL COT ON FLAT TERRAIN

il v [ 2 [ 3 4
al 3.6151 | 3.0349 | -0.4162 | -0.3200
al 3.6413 | 2.9006 | -0.6657 | -0.2484
ab 3.3894 | 2.9544 | -0.3732 | -0.3690
ag 3.2884 | 3.5470 | -0.3728 | -1.1041
al 3.1135 | 3.5186 | -0.2359 | -0.3973
al 3.1708 | 3.6851 | -0.3780 | -0.4260
al 3.0349 | 3.6151 | -0.3200 | -0.4162

slope is s and constrained to have a speed of 0.8m/s. In this
paper we optimized 7 different controllers to obtain

Z ={C-3, C_2, C—1, Co C1, C2, (3}

Determining slope set is straightforward also. For the
controllers we designed, by simulating we can easily have
an idea about what slope range the robot may possibly walk
on. The slope set should at least contain that range. It is
perfectly fine to cover more. Then, we typically uniformly
pick certain number of slopes. For example, in this paper we
will use

€1V

S={k°/3 | keZ, —30<k< 30} 32)

The state set should intuitively cover the reachable part of
the state space. It should be dense enough for accuracy while
not having “too many” elements. Determining the state set
will be one of the goals in meshing, as we will see shortly.
The second goal will be learning what h'(y[n], s[n], ([n]) is
for all y[n] € Y, s[n] € S, and ([n] € Z. Without loss of
generality we will reserve the first state (y;) to represent an
absorbing failure state.

A. Meshing Reachable State Space

Determining state set is difficult because we are studying
high dimensional systems, e.g., the 5-Link walker has a 10
dimensional state (i.e., positions and velocities). So, it is not
feasible to uniformly and densely cover a hypercube that
includes the reachable state space. However, meshing the
reachable state space can be achieved by starting from a
very small number of states (one non-failure state is enough)
and deterministically expanding by iteratively simulating [5].
Our algorithm works as follows. We initially start by setting
Y ={y €Y, y # y1}, which will correspond to all the
states that are not simulated yet. Then we start the following
iteration: As long as there is a state y € Y, simulate to find
all possible h'(y[n], s[n], {[n]) and remove y from Y. For the
points newly found, check their distance to the other states
in Y. If the distance is larger than some threshold d;p,, i.e.,
the point is far enough from all existing mesh points, then
add that point to Y and Y.

Using the right distance metric is key in ensuring that Y
has a small number of states while accurately covering the
reachable state space. Standardized (normalized) Euclidean

distance turned out to be extremely useful as it dynamically
adjusts the weights for each dimension according to its
standard deviation at any mesh iteration [12]. The distance
of a vector x from Y is calculated as

2
Ti — Yi
SR

where 7; is the standard deviation of " dimension of all
existing points in set Y. In addition, the closest point in Y
to = is given by

2
c(z,Y) := argmin {Z (%;%) } . (34)

yeY Z

d(z,Y) := min
yey

Our algorithm allows us to increase the accuracy of the
final mesh at the expense of producing a higher number of
states (larger Y) by decreasing threshold distance dyp,.. For
space considerations, we will refer interested reader to [5].
For this paper we obtained a mesh using d;p,, = 0.5, which
resulted with 115,990 points. We will refer to this as the
full-mesh.

The key point for meshing the 10D space is the fact
that the reachable state space is actually a quasi-2D man-
ifold [13]. For the HZD controller, this corresponds to Z,
i.e., the zero dynamics manifold. However, we will see that
this is an approximation on mildly rough terrain.

B. Meshing HZD Surface

In this paper, we propose a new strategy for meshing.
Instead of expanding Y as we simulate, we pre-determine it
initially. Remember that for each controller, we have a zero
dynamics manifold as illustrated in Figure 2, where the x-
axis is & and left y-axis is £;. We simulate from (&7, &2) =
(07, 8ser0 £3) Once, until £; stops increasing to obtain the blue
trajectory in the figure. The non-linear right y-axis shows
the corresponding 3 values in degrees. On flat terrain, the
impact occurs when 8 = 0, where £&; = 0~ and & = &5.
As shown with dashed line in the figure, this impact maps
back to (£1,&2) = (07,050 &), where 3 = 180°. Thus,
we have a limit cycle. However if the terrain is not flat, the
blue curve would impact (intersect the Poincaré section) at
another point on the curve. In addition, if the initial &> was
lower (higher) than J,e0 &5, then the trajectory would shift
to left (right) and deform. So, by starting with different &»
values and experiencing different s values, the model will
visit a variety of trajectories on this 2D manifold.

We then choose a rectangle to mesh. The y-axis points
are taken from the slope set, e.g., (32). However, the HZD
controller we obtained will not necessarily reach all values in
this set. To illustrate, the controller (p will not reach s < —8
while &; is monotonically increasing. So we mesh points with
s € S such that s > —8, corresponding to (; > —156.3°.
Limits for the x-axis can be selected conservatively. In this
paper, we pick points from —2&5 to 0. As a result, we
mesh the shaded rectangle shown in Figure 2, where a toy
mesh with 5 x 5 = 25 states is also shown. We will obtain
the actual mesh by uniformly distributing [—2&5, 0] for 100



points and use the reachable part of the slope set, which is
also uniform. In the end, our combined mesh will consist
of multiple uniform 2D grids, i.e., one 2D grid for each of
the controllers (7 in this paper) available. That is, a given
mesh point includes three values: &7, &5, and the (previous)
controller, (, used in driving the system to a particular HZD
manifold during the step immediately preceding the (pre-
impact) Poincaré mesh state. We will refer to this full mesh
as a uniform-mesh, which turns out to have 29,701 states in
this work.

-156.3r @ ° [} ° e -8
-159.5 - ® . k ° o 4
0~ = -1639; @ ° ° e 0
o~ -1725r - ® o L ° e 5
Bl -175.15; e ° ° ° e 10
= ~
72}
Q Q
Z g
&K Q
= )
v Q)
0+t = -1943L— : : : —— 180
-2930  -2197 —1465\ -732 0

&5 (degrees/second) &

(Szero 13 ;

Fig. 2. Zero dynamics manifold for {p. Axis names are shown underlined
and y-axis on the right is not linear. Blue curve is the trajectory going
through the limit cycle. Limit cycle on flat terrain includes the section of
this curve until {; = 6~ . Then, an impact (shown as dashed line) maps it
back to the beginning of the same curve. The green shaded area is where
we would like to mesh. Toy manifold illustrates meshing with 5 x 5 = 25
states. Recall that {1 and (2 represent weighted sums of joint positions and
velocities, respectively.

However, this meshing will not be able to capture the
full dynamics as accurately as the full meshing of previous
section. The reason is, the robot will leave this manifold
on rough terrain, e.g., impact at S # 0 for blue trajectory
on Figure 2 causes x+ ¢ Z. Fortunately, as we hoped in
using this approach and also observe, this mesh will still
give very good information about the full dynamics. This
is because, although impacts push away from Z, our low-
level sliding-mode control is designed such that trajectories
will converge back to one of the HZD manifolds before
the next impact. There are three main advantages of using
this kind of meshing over the first one. (1) It ends up with
fewer states, because it is uniform. Imagine we would like to
mesh the line segment given by [0,1]. In this case dispersion
would correspond to the longest segment in [0,1] without
any points [14]. For a fixed dispersion, say 0.1, uniform-
mesh would give the least number of states (9 points). (2) It
is much faster to mesh and simulate using this method. This
is partly because of the number of states in the mesh, but
also expanding iteratively and checking distances repeatedly
make full-meshing take much longer and make parallel
computation less practical. (3) Ensuring robustness of the
policies is much more trivial. This is a very important aspect
for our work as we will explain at the end of Section VIL.

V. OBTAINING MARKOV CHAIN

By meshing and simulating in the previous section we
obtain hl(y,s,() forally € Y, s € S, and ( € Z. We
define

h?(x[n], s[n], ¢[n]) = c(h(x[n], s[n], ¢[n]),Y).  (35)
where (34) is used, and the superscript a stands for ap-

proximation. Then the approximate step-to-step dynamics are
given by

yln + 1] = h*(y[n], s[n], C[n]). (36)

Using this we can write the deterministic state transition as

if y; = ﬁa(yi, $,¢) 37)
otherwise.

A Markov Chain can be represented by a stochastic state-
transition matrix 7 is defined by

T = Pr(yln +1] = y; | y[n] = v:). (38)

To calculate this matrix, the first thing we need to do
is assume a distribution over slope set, noted by Ps :=
Pr(s[n] = s). In this paper, we will assume a normal
distribution for Pg, with mean g, and standard deviation
os. After distributing s values, we end up with a Markov
Decision Process model. The last step to end up with a
Markov Chain is to decide on which controller to use. If
only one of the controllers, say (; is used (no switching), 7"
can be calculated as

T° =Y Ps(s) T%s,¢). (39)
ses
More generally, we consider policies in the form of
¢[n] = 7(y[n], [n]), (40)

where 7 is the function determining which controller to use
and s is the noisy slope information given by

§ = max(min(S), min(maz(S),s +1)), (41)
where [ is the noise. Note that this says s=s+1
except at boundaries of the slope set. We define
Pr(l) :== Pr(l[n] =1). I is normally distributed with zero
mean and standard deviation ;. Then the approximate
dynamics (36) will be

yln +1] = h*(y[nl, s[n], w(y[nl, 3[n))).  (42)

As a result the stochastic state-transition matrix is given by

Ty =Y > Ps(s) Pull) T (s, m(y:. 3).

seS les

(43)



VI. MEAN FIRST PASSAGE TIME (MFPT)

In the presence of enough noise, e.g., roughness of the
terrain, the robot is destined to fall. However, if it takes many
steps (thousands) before doing so, the system can be said to
be metastable [4]. In this section, we will summarize how to
estimate the average number of steps before failing (MFPT).
We invite interested readers to see [15] for details.

Because we model the failure state as absorbing, one
(maximal) eigenvalue of 7°° will be A\; = 1. We refer to the
second largest real eigenvalue as \,. For metastable (rarely-
falling) systems, Ay will be close to but smaller than 1.

After taking one or two non-falling steps, the robot con-
verges very nearly to so called metastable distribution, ¢.
Taking a step afterwards, the robot will fall with 1 — Ao
probability, otherwise its probabilistic distribution in state
space will not change. As a result, the probability of taking
n steps only, equivalently falling at the nth step is simply

yln — 1] # y1)

For A2 < 1, as n — oo, the right hand side goes to zero, i.e.,
the system will eventually fail. When n = 1 is substituted,
we get 1 — Ay, which corresponds to “falling down” at the
first step (taking 1 step only). Then, the average number of
steps can be then calculated as

Pr(y[n] = y1, =N = Ng). (44)

MFPT = E[FPT]

—ZnPr
_Z nAF (1= Ag) =

where we used the fact that A\, < 1.

For o, = 1, we present u4 versus MFPT in Figure 3. The
solid lines are obtained using the full-mesh, which captures
the actual dynamics more accurately. Calculating T with a
uniform-mesh gives the dashed lines. We see uniform-mesh
is a good, but not perfect approximation of the full dynamics.

n] =y1, yn—1] # y1)

(45)

1—)\2

VII. SWITCHING CONTROL

In this section we will assume o, = 1 and o; = 0.1. To
solve for optimal policies we will use value iteration [16].
We will iteratively calculate the value of y; using

Zmax Z Pi;(¢,3) (R

ses

@) +a Vi),

(46)
where P;;(, 5) is a probability we will explain soon, R(j)
is the reward for transitioning to y;, and « is the discount
factor, which is chosen to be 0.9.
Remember that the failure state is y;. The value of the
failure state will initially be zero, i.e.,

(47)
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Fig. 3. Slopes ahead of the robot are assumed to be normally distributed

with o = 1. Figure shows average number of steps before falling calculated
using (45) versus ps for two independently obtained meshes. Solid lines
represent the full-mesh with 115,990 states. It is obtained using d;p,- = 0.1
in Section IV-A. The dashed line is a result of using uniform-mesh with
29,701 states. It was obtained in Section IV-B. Each color (one solid and
one dashed line) represents {¢—3, (-2, {(—1, Co (1, {2, 3} from left to
right respectively.

and it will always stay as zero, because the reward for taking
a successful step is one, while falling is zero.
1
o (48)
otherwise

Note that the reward function we use does not depend on
the controller, slope ahead, or current state. Use of more so-
phisticated reward functions (e.g., considering energy, speed,
step width) is a topic of [17]. However, our focus is on
stability in this paper. Using (47) and (48), we can rewrite
(46) as

+a V(). (49

Zmax Z P;;(¢,5) (1
ses J#1

The probability of ’thinking 5 is the slope ahead’ and
“transitioning from y; to y; when ( is used’ is then

ZJ Ca *Z ZPS PL fs(S,l,S) Tg(saC)a (50)
seS lesS
where

Fs(s,1,8) = {1’

0, otherwise.

§ = max(min(S), min(max(S), s +1))

(51

Using value iteration on uniform-mesh we obtain “optimal
policy”. To evaluate its performance, we will use the full-
mesh, which we denote by Y. Then this policy corresponds

to using
Cln] = 7(e(ys(n], Y), 3[n]), (52)

where y; € Yy and c is the function defined in (34). The
results are shown with dashed in Figure 4. We see that there
is a great gain in switching.
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Fig. 4. Evaluation of policies obtained using uniform-mesh on full-mesh.
Slopes ahead of the robot are assumed to be normally distributed with o5 =
1. Figure shows average number of steps before falling calculated using (45)
versus ps. Optimal policy is obtained using (49), whereas (53) will give
the robust policy. Fixed controllers on the bottom are shown for reference.

Despite the success of the policy, we suspect we can
do better based on the phenomenon introduced in [5]. We
consider the following situation: While the actual state is y;,
the robot may think it is y;. To make this clear, we rewrite
the value iteration algorithm.

S Py(¢3) (1+a V()

i1

V(k):= max (53)
(k) ZE; :

Note that we only exchanged ¢ with k, but this will make it

easier to follow. The probability of ‘thinking s is the slope

ahead’, ’thinking the state is y;’, and ‘transitioning to y;

when ( is used’ is

ij((vg) = Z Z ZPS(S)PL(Z) fs(s,l,§) P)zllz Tg’(SaC)a

seS leS i
(54)

where Pf,z is the probability of being at state y; when robot
thinks the state is yy.

Py = Pr(yln] =y | ln] = yx) (55)

Determining P? for the full-mesh is not intuitive. We
proposed an ad-hoc solution in [5]. However, for the uniform-
mesh this will be very easy and visualizable as shown in
Figure 5. This is in fact a table showing weights of the
probability of being at neighbor states, when the robot thinks
the states is the one in the center. So when the robot thinks
the state is the one at the center, there is a 0.15 probability
that it is actually there. To determine weights of the neighbor
states, we simply used Multivariate normal distribution with
mean p = Oy and covariance matrix X = Is.

Using PY illustrated in Figure 5 for (53) gives the robust
policy in Figure 4. Noting the logarithmic y-axis we see the
increased robustness helps greatly. Overall, the robot takes
10 thousand steps on average where the fixed controllers can
only take 10 steps!
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Fig. 5. Weight distribution for belief state. Figure shows how Pilz is

determined. When the robot thinks the state is the one at the center, there
is a 0.15 probability that it is actually there. With 0.09 probability, either
&1 and &2 is neighbor to what it thinks.

VIII. CONCLUSIONS

In this paper we propose a new method for meshing, called
uniform-meshing, to approximate the dynamics of a walking
robot as a Markov chain. Compared to our previous method
in Section IV-A, uniform-meshing is computationally very
efficient. In addition, although not quite as accurate as our
full-mesh approach, it is still a decent approximation. We
also showed that ensuring robustness of the policies is trivial
for a uniform-mesh. We anticipate future work to improve
generation of a Markov chain based on the uniform mesh
can improve this approximation even further.

We conclude by emphasizing that our approach here
relies on two basic ideas. First, the HZD framework creates
holonomic constraints, so that only the position and velocity
of single “clock” variable (which in this work is a linear
combination, § = cq, of the joint angles) are needed to define
the full (10D) state of all joint positions and velocities, if
the dynamics are constrained to the zero dynamics manifold
(i.e., corresponding to zero error in the desired constraint
equations). Second, the purpose of sliding-mode control is
to drive errors in trajectories to zero in finite time, exactly
with the aim of ensuring the dynamics are driven to the
HZD manifold for the controller (¢) used for a given step
before the swing foot impacts with terrain. There is one
important catch, which is that the basin of attraction for
the HZD manifold is limited, so there is no guaranteed
that trajectories will actually converge, rather than spinning
off and failing horribly. This caveat in fact captures a
fundamental, motivating goal of our methods both here and
in previous work: we can computationally quantify the long-
term performance (usually converging, but very rarely falling
down), even when global guarantees of stability do not exist.

APPENDIX

There are various methods to design v in (9) to force
h (and h) to zero [9]. While even a PD controller would
work, a Sliding Mode Control (SMC) is preferable, due



to its finite time convergence [10], which we summarize
here. Remember that h corresponds to tracking error. The
generalized error is defined as

oi =hi +hi/7i, i=1{1,2,3,4}, (56)

where 7;s are time constants for h;. Note that when the
generalized error is driven to zero, i.e. o; = 0, we have

0= h; + hi/7;. (57)
The solution to this equation is given by
hi(t) = hi(to) exp(—(t —to)/Ti), (58)

which drives h; to zero exponentially fast and justifies the

name time constant. It can be also seen as the ratio of

proportional and derivative gains of a PD controller.
Finally, v in (9) is given by

v; = —kiloi|** Lsign(oy), i={1,2,3,4}, (59)

where k; > 0 and 0.5 < a; < 1 are called convergence
coefficient and convergence exponent respectively. k; can be
seen as the common gain. 0.5 < a; < 1 ensures finite time
convergence. Note that if we had a; = 1, this would be a
PD controller. We used «; = 0.7, 7; = 0.1, k; = 10 for
all controllers in this paper, but hy was different for each
controller.
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