
1Homework 3: Computation of the Camera
Matrix

Solution

I. I NTRODUCTION

−5

0

5 −5

0

5
−4

−2

0

y
b

3D Object − Roof

x
b

z b

−3 −2 −1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x

y

Projection of the Model Points on the Image Plane

Noise Free
Noisy

Fig. 1. The left images shows the point of the 3D model in the object coordinate system. The lines represent the normals (with
respect to the underlaying surface). The right image shows the same points projected on the image plane. The dots represent
the noise free projection, whereas the circles represent a noisy version of the projected points (obtained adding Gaussian noise
with zero mean andσ = 1.5 · 10−2).

In this exercise you will be given a set ofn point correspondencesxi ↔ Xi where xi

denotes the homogeneous coordinates of a point on the camera image plane andXi denotes
the homogeneous coordinate of the same point in the 3D space. Your goal is to determine the
camera matrixP ∈ R3×4 such that:

xi = PXi =




pT
1

pT
2

pT
3


Xi

for 1 ≤ i ≤ n. To carry out this task you will implement the Direct Linear Transformation
(DLT) algorithm. Most of the material needed to solve this exercise can be found in the third
Handout. From the web you can download the filedata.mat which contains the matricesx
and X. On theith column of these matrices you can read the homogeneous coordinates of the
corresponding pointsxi ↔ Xi.



II. T HE MATH

It is easy to see thatxi = PXi impliesxi×PXi = 0 (the outer product between two parallel
vectors is always 0: why?). This condition will be used to derive a matrix whose null space will
allow you to reconstructP .

Question 1: Show the steps to derive the three linear equations (with respect to the compo-
nents of the matrixP ) that are obtained from the relationxi × PXi = 0. How many of them
are linearly independent? Why?

Suggestion: the outer product between two vectors
[

x1 x2 x3

]T
and

[
y1 y2 y3

]T
can

be obtained calculating the formal determinant:∣∣∣∣∣∣

i j k
x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣
Note that in our case the scalarsyi are given by the inner product of thejth row of P and the
vectorXi, i.e. pT

j Xi.

Answer 1: The definition of the formal determinant allow us to write:∣∣∣∣∣∣

i j k
x y 1

pT
1 X pT

2 X pT
3 X

∣∣∣∣∣∣
= 0 ⇒





ypT
3 X− pT

2 X = 0
pT

1 X− xpT
3 X = 0

xpT
2 X− ypT

1 X = 0

There are only two linearly independent equations (the third one can be generated by summing
the first to the second): we will drop the third one. IfX =

[
X Y Z 1

]T
, then the first and

second equation can be rewritten as:

XP2,1 + Y P2,2 + ZP2,3 + P2,4 − yXP3,1 − yY P3,2 − yZP3,3 − yP3,4 = 0 (1)

XP1,1 + Y P1,2 + ZP1,3 + P1,4 − xXP3,1 − xY P3,2 − xZP3,3 − xP3,4 = 0 (2)

or equivalently, in matrix form:[
X Y Z 1 0 0 0 0 −xX −xY −xZ −x
0 0 0 0 X Y Z 1 −yX −yY −yZ −y

]
p = 0

wherep is defined in Question 2.

Question 2: Consider the vectorp =
[

pT
1 pT

2 pT
3

]T
obtained by concatenating the trans-

pose of the three rows ofP (similarly to what you did in Homework 2 to estimate the homography
H). Using the first two equations for each pairxi ↔ Xi construct and write explicitly the matrix
A ∈ R2n×12 such that:

Ap = 0

Answer 2: We just have to stack one on top of the other the equations (1) obtained for each
of the point correspondences.

Question 3: Why the matrix P has only 11 degrees of freedom? What is the minimum
number of pointsnmin that you need to estimatep? Explain.

Answer 3: SinceP relates two homogeneous vectors the scale does not matter, therefore one
of the elements of the matrix can be fixed. Sincep ∈ R12 but it has only 11 degrees of freedom

2



we need5 point correspondences plus “half” correspondence, in the sense that we can use just
the equation that relates thex or y coordinates. In general we can writenmin = 6 or, with a
little abuse of notation,nmin = 51

2
.

III. T HE IMPLEMENTATION

In this section you will implement the DLT algorithm usingMatlab . The final goal is to
write a functionP = get_camera_matrix(x, X) which computes the camera matrixP
given the correspondences in the matricesx andX. The three main steps of the functions are:

1) Compute the matrixA from the point correspondencesxi ↔ Xi.
2) Solve the problem:

p̂ = min
‖p‖2=1

‖Ap‖ (3)

3) Return the matrixP̂ built form p̂.
The critical step of the algorithm is the second one. Read and understand how theMatlab
function svd to compute thesingular value decompositionof a matrix works (this will be
useful also for the face recognition project). It can be shown that the vectorp∗ that solves (3)
is given by thelast columnof the matrixV.

Question 4: Provide theMatlab code that implements the functionget_camera_matrix
and write the numerical expression of the camera matrixP̂ obtained applying your routine. Check
your result by plotting on the image plane the original pointsxi and the projection of the points
Xi according toP̂ , i.e. x̂i = P̂Xi.
SuggestionCheck the functionhold and remember to convert from homogenous to cartesian
coordinates.

Answer 4: The Matlab code necessary to compute the camera matrix is the following:

0001 function A = get A(x, X)
0002
0003 n = size(x, 2);
0004
0005 h = 1;
0006 for k =1:n
0007
0008 A(h, :) = [X(1, k) X(2, k) X(3, k) 1 ...
0009 0 0 0 0 ...
0010 -x(1, k)*X(1, k) -x(1, k)*X(2, k) ...
0011 -x(1, k)*X(3, k) -x(1, k)];
0012 A(h + 1, :) = [0 0 0 0 ...
0013 X(1, k) X(2, k) X(3, k) 1 ...
0014 -x(2, k)*X(1, k) -x(2, k)*X(2, k) ...
0015 -x(2, k)*X(3, k) -x(2, k)];
0016
0017 h = h + 2;
0018

3



0019 end ;
0020
0021 return

and:

0001 function P = get camera matrix(x, X)
0002
0003 A = get A(x, X);
0004 [U S V] = svd(A);
0005 P = V(:, size(V,2));
0006
0007 P = reshape(P, 4, 3)’;
0008
0009 return

The original camera matrix is given by:

P =




0.14317810330863 0.00842890215678 0.02213099998823 −0.00256938875583
0.00877652062655 0.10707672122171 −0.09756200734510 0.05336716889261
0.00041241486525 −0.00182986227068 −0.00197121902156 0.97724937743711




whereas the camera matrix estimated using the previous code is:

P̂ =




0.14053566766049 0.00817447347994 0.02175591741225 −0.00295581323561
0.00824411820581 0.10589782478380 −0.09508514703888 0.05529468747919
−0.00007706358473 −0.00141827585856 0.00315672752683 0.97790994601782




Figure 2 shows the reprojected points.

Question 5: Let x̂i = P̂Xi be the projection of the pointXi on the image plane according
to the matrixP̂ . Using Matlab compute the reprojection error:

E =
n∑

i=1

‖xcartesian
i − x̂cartesian

i ‖2

where the superscriptcartesian indicates that the points are represented using cartesian coor-
dinates.

Answer 5: E = 0.04280366724876

Question 6: Recalculate (and write)̂P using nmin point correspondences and compute the
reprojection error. How does this value compare to the value you obtained in Question 5? Did
you expect this? Why?
SuggestionMake sure you don’t pick the points in some singular configuration, i.e. a set of
collinear points.

Answer 6: By choosing the points with indices1, 7, 12, 55, 63, 78 we obtained:

P̂min =




0.12566042436172 0.00846780239953 0.01404267468514 −0.01219122698349
0.00587863213522 0.09734221723896 −0.08494521979584 0.04848021704513
−0.00471289936000 −0.00222770658181 0.03149803392517 0.9816804692578




4



−3 −2 −1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x

y
Reprojection on the Image Plane

Original points
Reprojected Points

Fig. 2. The image shows the reprojected pointsx̂i on the camera image plane.

and consequentlyEmin = 0.40401973632080. Note thatEmin > E and this is expected since
we are using less data in the least square estimation of the matrixP (and therefore the noise
has a larger impact on the estimate).

5


