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Multiagent Maximum Coverage Problems:
The Trade-off Between Anarchy and Stability

Vinod Ramaswamy, Dario Paccagnan, and Jason R. Marden

Abstract—The price of anarchy and price of stability are two
well-studied performance metrics that seek to characterize the
inefficiency of equilibria in distributed systems. The distinction
between these two performance metrics centers on the equilibria
that they focus on: the price of anarchy characterizes the quality
of the worst-performing equilibria, while the price of stability
characterizes the quality of the best-performing equilibria. While
much of the literature focuses on these metrics from an analysis
perspective, in this work we consider these performance metrics
from a design perspective. Specifically, we focus on the setting
where a system operator is tasked with designing local agent
utility functions to optimize these performance metrics in a class
of games termed covering games. Our main result characterizes a
fundamental trade-off between the price of anarchy and price of
stability in the form of a fully explicit Pareto frontier. Within
this setup, we observe that optimizing the price of anarchy
comes directly at the expense of the price of stability (and vice
versa). Our second result demonstrates how a system-operator
could incorporate an additional piece of system-level information
into the design of the agents’ utility functions to breach these
limitations and improve the efficiency guarantees associated with
the resulting equilibria. Informally, this valuable piece of system-
level information pertains to the value of the largest uncovered
resource in our covering game.

I. INTRODUCTION

A multiagent system can be characterized by a collection
of individual subsystems, each making independent decisions
in response to locally available information. Such a decision-
making architecture can either emerge naturally as the result
of self-interested behavior, e.g., drivers in a transportation net-
work, or be the result of a design choice in engineered system.
In the latter case, the need for distributed decision-making
stems from the scale, spatial distribution, and sheer quantity
of information associated with various problem domains that
exclude the possibility for centralized decision making and
control. Examples include the use of robotic networks in
post-disaster environments [1], [15], [20], task scheduling and
management [8], water conservative food production [18],
fleets of autonomous vehicles [36], and micro-scale medical
treatments [14], [35].

Regardless of the specific problem domain, the central goal
associated with the design of a networked control system is
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to derive admissible control policies for the decision-making
entities that ensure the emergent collective behavior is desir-
able with regards to a given system-level objective. At a high
level, this design process entails specifying two key elements:
(i) the information available to each subsystem, attained either
through sensing or communication, and (ii) a decision-making
mechanism that prescribes how each subsystem processes
available information to formulate a decision. The quality of
the resulting networked control system is ultimately gauged by
several dimensions including the stability and efficacy of the
emergent collective behavior, characteristics of the transient
behavior, in addition to the communication costs associated
with propagating information throughout the system. Within
this setting, two fundamental questions arise:

(i) What are the decision-making rules that optimize the
performance of the emergent collective behavior?

(ii) How does informational availability translate to attainable
performance guarantees?

This paper seeks to shed light on the answer to these
two questions for the class of multiagent maximum cover-
age problems introduced in [12]. In a multiagent maximum
coverage problem we are given a ground set of resources
R, n collections of subsets of the ground set A1, . . . ,An
where Ai ⊆ 2R for each i ∈ {1, . . . , n}, and a valuation
vr ≥ 0 for each resource r ∈ R. Given a specific covering
problem, the system-level objective is to select one set from
each collection, i.e., one choice ai ∈ Ai for each i = 1, . . . , n,
so as to maximize the total value of the covered elements.
It is important to highlight that there are well-established
centralized algorithms that can derive an admissible allocation
of agents to resources that is within a factor of 1 − 1/e of
the optimal allocation’s value in polynomial time for special
classes of multiagent maximum coverage problems [9], [19],
[30]. Further, no polynomial time algorithm can provide a
better approximation, unless P = NP . Unfortunately, the
applicability of such centralized algorithms for the control of
multiagent systems is limited given the concerns highlighted
above.

This paper focuses on distributed approaches for reaching a
near-optimal allocation where the individual agents make their
covering selections in response to a designed decision-making
policy that makes use of locally available information. The
central goal here is to design agent decision-making rules that
optimize the quality of the emergent collective behavior for
a given level of informational availability. Of specific interest
will be identifying how the level of information available to
the individual agents impacts the attainable performance guar-
antees associated with the corresponding optimal networked
control system.
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In the spirit of [12], [26], we approach this problem through
a game theoretic lens where we model the individual agents
as players in a game and assign each agent a local objective
function that guides its decision-making process. Here, we
impose a locality constraints that each agent’s local objective
can only depend on (i) the resources that the agent selected and
(ii) the number of other agents that selected these resources.
We treat these local objective functions as our design param-
eter and focus our analysis on characterizing the performance
guarantees associated with the resulting equilibria of the de-
signed game. We concentrate our analysis on two well-studied
performance metrics in the game theoretic literature termed the
price of anarchy and price of stability [2], [17]. Informally, the
price of anarchy provides performance guarantees associated
with the worst performing equilibrium relative to the optimal
allocation. The price of stability, on the other hand, provides
similar performance guarantees when restricting attention to
the best performing equilibrium. The lack of uniqueness of
equilibria implies that these bounds are often quite different.1

The work of [12] was one of the first to view price of
anarchy as a design objective rather than its more traditional
analytical counterpart. Focusing on the same class of multi-
agent maximum coverage problems, [12] identifies the agent
objective functions that optimize the price of anarchy given
the informational limitations discussed above. Note that in this
setting, any agent i is unaware of the covering options of any
other agents j 6= i, as well as any resource values that the agent
is unable to cover. Interestingly, [12] demonstrates that this
optimal price of anarchy attains the same 1− 1/e guarantees
of the best centralized algorithms, meaning that there is no
degradation in terms of the worst-case efficiency guarantees
when transitioning from the best centralized algorithm to the
presented distributed algorithm that adheres to the prescribed
informational limitations.

Our Contribution. The first main result of this manuscript
addresses the achievable performance guarantees, in terms of
the price of anarchy and price of stability, attainable through
the design of agent objective functions of the above form in
[12]. In Theorem 4.1, we characterize the price of anarchy and
price of stability frontier that is achievable through the design
of agent objective functions in these multiagent covering
problems. This characterization demonstrates a fundamental
trade-off between the price of anarchy and price of stability as
design objectives in such multiagent covering problems. That
is, designing agent objective functions to improve the worst-
case performance guarantees necessarily degrades the best-
case performance guarantees. As corner cases, we demonstrate
that any objective functions that ensure a price of anarchy of
1 − 1/e also inherits a price of stability of 1 − 1/e. Note
that having a price of stability smaller than 1 implies that
the optimal allocation is not necessarily an equilibrium. On
the other hand, any objective functions that ensure a price of
stability of 1 also inherit a price of anarchy of at most 1/2.

The second main result of this manuscript demonstrates
that one can move beyond this frontier through the design

1The justification for focusing purely on equilibria, as opposed to dynamics,
derives from the fact that there is a rich body of literature in distributed
learning that could be employed to lead the collective behavior to an
equilibrium of the derived game, c.f., [11].

of agent objective functions encompassing additional system-
wide information. In Theorem 5.1, we identify a minimal (and
easily attainable) piece of system-level information that per-
mits the realization of decision-making rules with performance
guarantees beyond the price of anarchy / price of stability
frontier provided in Theorem 4.1. When agents are provided
with this additional information, which can be informally
interpreted as the largest value of an uncovered resource in
the system, one can derive agent objective functions that yield
a price of anarchy of 1 − 1/e and a price of stability of 1,
which was unattainable without this piece of information.

The importance of this result centers on the fact that
specific system-level information, if propagated to the agents,
could be exploited in networked control algorithms to improve
system performance. Understanding the trade-off between
this improvement and the communication costs necessary to
propagate this information throughout the system is clearly an
important question that warrants future attention.

Related Work. The results contained in this manuscript add
to the growing literature of utility design, which can be inter-
preted as a subfield of mechanism design [7] where the goal
is to design admissible agent objective functions to optimize
various performance metrics, such as the price of anarchy and
price of stability, [16], [21], [27]. While recent work in [13]
has identified all design approaches that ensure equilibrium
existence in local utility designs, the question of optimizing the
worst-case efficiency of the resulting equilibria, i.e., optimiz-
ing the price of anarchy, is far less understood. Nonetheless,
there are a few positive results in this domain worth reviewing.
Beyond [12], alternative problem domains where optimizing
the price of anarchy has been explored include concave cost
sharing games [24], optimal tolling in congestion games [32]
and reverse carpooling games [23]. More recently, the authors
in [31], [33] characterize and optimize the price of anarchy
relative to a broader class of submodular and supermodular
combinatorial optimization problems, rediscovering [12] as a
special case. Lastly, a recent result in [10] characterizes a
similar trade-off between the price of anarchy and price of
stability in a mechanism design setting.

Much of the research regarding optimal utility design has
concentrated on a specific class of objectives, termed budget-
balanced objectives, which imposes the constraint that the sum
of the agents’ objectives is equal to the system welfare for
every allocation. Within the confines of budget-balanced agent
objective functions, several works have identified the optimal-
ity of the Shapley value objective design with regards to the
price of anarchy guarantees [6], [37], [38]. However, the impo-
sition of the budget-balanced constraint is unwarranted in the
context of multiagent system design and its removal allows for
improved performance, as shown in [12] and this manuscript.

Paper Organization. In section II we introduce the multiagent
coverage problem and corresponding performance metrics.
In section III we provide some preliminary analysis on the
performance of specific distribution rules. In section IV we
present the trade-off between price of anarchy and stability.
Lastly, in section V we show how to breach this trade-off by
leveraging an additional piece of system-level information.

Notation. We use N, R>0 and R≥0 to denote the set of natural,
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positive and non negative real numbers; e is Euler’s number.

II. MODEL AND PERFORMANCE METRICS

In this section we introduce the multiagent maximum cov-
erage problem and our game theoretic model for the design
of local decision-making mechanisms [12]. Further, we define
the objectives and performance metrics of interest, as well as
provide a review of the relevant literature.

A. Covering problems
Let R = {r1, r2, . . . , rm} be a finite set of resources where

each resource r ∈ R is associated with a value vr ≥ 0 defining
its importance. We consider a covering problem where the
goal is to allocate a collection of agents N = {1, . . . , n} to
resources in R in order to maximize the cumulative value
of the covered resources. The set of possible assignments for
each agent i ∈ N is given by Ai ⊆ 2R and we express
an admissible allocation by the tuple a = (a1, a2, . . . , an) ∈
A = A1× · · ·×An. The agents’ assignment sets A1, . . . ,An
are fixed, and need not conform to any specific structure or
symmetry. The total value, or welfare, associated with an
allocation a ∈ A is given by

W (a) =
∑

r∈∪i∈Nai

vr. (1)

The goal of the covering problem is to find an optimal
allocation, i.e., an allocation aopt ∈ A that satisfies

aopt ∈ arg max
a∈A

W (a), (2)

where we restrict attention to admissible allocations a ∈ A.
We will often express an allocation a as (ai, a−i) with

the understanding that a−i = (a1, . . . , ai−1, ai+1, . . . , an)
denotes the collection of choices of the agents other than
agent i. Lastly, we will periodically restrict our attention to
the special case of single-selection covering problems where
each allocation ai ∈ Ai consists of a single resource, i.e.,
Ai ⊆ R as opposed to Ai ⊆ 2R. Figure 1 provides some
illustrative examples of single-selection covering problems.

B. A game theoretic model
This paper focuses on deriving distributed mechanisms for

attaining near optimal solutions to covering problem where
the individual agents make independent choices in response
to local available information. Specifically, in this section
we assume that each agent i has information only regarding
the resources that the agent can select. Rather than directly
specifying a decision-making process, here we focus on the
design of local agent objective functions that adhere to these
informational dependencies and will ultimately be used to
guide the agents’ selection process. To that end, we consider
the framework proposed in [12] where each agent is associated
with a local utility or objective function Ui : A → R, and for
any allocation a = (ai, a−i) ∈ A, the utility of agent i is

Ui(ai, a−i) =
∑
r∈ai

vr · f(|a|r), (3)

where |a|r captures the number of agents that choose resource
r in the allocation a, i.e., the cardinality of the set {i ∈ N :
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v1f(2)
<latexit sha1_base64="HP43ZRo8lOEJsK/OGUB3qLiaYV0=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoMQL2E3KnoMePEYwTwgWcLspDcZMju7zMwGQshHePGgiFe/x5t/4yTZgyYWNBRV3XR3BYng2rjut5Pb2Nza3snvFvb2Dw6PiscnTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWM7ud+a4xK81g+mUmCfkQHkoecUWOl1rjnheXqZa9YcivuAmSdeBkpQYZ6r/jV7ccsjVAaJqjWHc9NjD+lynAmcFbophoTykZ0gB1LJY1Q+9PFuTNyYZU+CWNlSxqyUH9PTGmk9SQKbGdEzVCvenPxP6+TmvDOn3KZpAYlWy4KU0FMTOa/kz5XyIyYWEKZ4vZWwoZUUWZsQgUbgrf68jppViveVeXm8bpUq2Zx5OEMzqEMHtxCDR6gDg1gMIJneIU3J3FenHfnY9mac7KZU/gD5/MHANKOpg==</latexit>

v1f(1)
<latexit sha1_base64="bfBXnZhm1hFy5DtTM6IBdKHJdVc=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoMQL2E3KnoMePEYwTwgWcLsZDYZMju7zPQGQshHePGgiFe/x5t/4yTZgyYWNBRV3XR3BYkUBl3328ltbG5t7+R3C3v7B4dHxeOTpolTzXiDxTLW7YAaLoXiDRQoeTvRnEaB5K1gdD/3W2OujYjVE04S7kd0oEQoGEUrtcY9Lyx7l71iya24C5B14mWkBBnqveJXtx+zNOIKmaTGdDw3QX9KNQom+azQTQ1PKBvRAe9YqmjEjT9dnDsjF1bpkzDWthSShfp7YkojYyZRYDsjikOz6s3F/7xOiuGdPxUqSZErtlwUppJgTOa/k77QnKGcWEKZFvZWwoZUU4Y2oYINwVt9eZ00qxXvqnLzeF2qVbM48nAG51AGD26hBg9QhwYwGMEzvMKbkzgvzrvzsWzNOdnMKfyB8/kD/z6OpQ==</latexit>

v2f(1)
<latexit sha1_base64="kmkseLmJXDlQC9YhfC5n5VV2bwo=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoMQL2E3KnoMePEYwTwgWcLspDcZMju7zMwGQshHePGgiFe/x5t/4yTZgyYWNBRV3XR3BYng2rjut5Pb2Nza3snvFvb2Dw6PiscnTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWM7ud+a4xK81g+mUmCfkQHkoecUWOl1rhXDcveZa9YcivuAmSdeBkpQYZ6r/jV7ccsjVAaJqjWHc9NjD+lynAmcFbophoTykZ0gB1LJY1Q+9PFuTNyYZU+CWNlSxqyUH9PTGmk9SQKbGdEzVCvenPxP6+TmvDOn3KZpAYlWy4KU0FMTOa/kz5XyIyYWEKZ4vZWwoZUUWZsQgUbgrf68jppViveVeXm8bpUq2Zx5OEMzqEMHtxCDR6gDg1gMIJneIU3J3FenHfnY9mac7KZU/gD5/MHANWOpg==</latexit>

v2f(2)
<latexit sha1_base64="DfHnw+MWTAnlp2mIX3XPvKaamVI=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRahXsruquix4MVjBfsB7VKyabYNzWZDki2UpT/CiwdFvPp7vPlvTNs9aOuDgcd7M8zMCyVn2rjut1PY2Nza3inulvb2Dw6PyscnLZ2kitAmSXiiOiHWlDNBm4YZTjtSURyHnLbD8f3cb0+o0iwRT2YqaRDjoWARI9hYqT3p+1HVv+yXK27NXQCtEy8nFcjR6Je/eoOEpDEVhnCsdddzpQkyrAwjnM5KvVRTickYD2nXUoFjqoNsce4MXVhlgKJE2RIGLdTfExmOtZ7Goe2MsRnpVW8u/ud1UxPdBRkTMjVUkOWiKOXIJGj+OxowRYnhU0swUczeisgIK0yMTahkQ/BWX14nLb/mXdVuHq8rdT+PowhncA5V8OAW6vAADWgCgTE8wyu8OdJ5cd6dj2VrwclnTuEPnM8fAlqOpw==</latexit>

v2f(2)
<latexit sha1_base64="DfHnw+MWTAnlp2mIX3XPvKaamVI=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRahXsruquix4MVjBfsB7VKyabYNzWZDki2UpT/CiwdFvPp7vPlvTNs9aOuDgcd7M8zMCyVn2rjut1PY2Nza3inulvb2Dw6PyscnLZ2kitAmSXiiOiHWlDNBm4YZTjtSURyHnLbD8f3cb0+o0iwRT2YqaRDjoWARI9hYqT3p+1HVv+yXK27NXQCtEy8nFcjR6Je/eoOEpDEVhnCsdddzpQkyrAwjnM5KvVRTickYD2nXUoFjqoNsce4MXVhlgKJE2RIGLdTfExmOtZ7Goe2MsRnpVW8u/ud1UxPdBRkTMjVUkOWiKOXIJGj+OxowRYnhU0swUczeisgIK0yMTahkQ/BWX14nLb/mXdVuHq8rdT+PowhncA5V8OAW6vAADWgCgTE8wyu8OdJ5cd6dj2VrwclnTuEPnM8fAlqOpw==</latexit>

v1f(1)
<latexit sha1_base64="bfBXnZhm1hFy5DtTM6IBdKHJdVc=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoMQL2E3KnoMePEYwTwgWcLsZDYZMju7zPQGQshHePGgiFe/x5t/4yTZgyYWNBRV3XR3BYkUBl3328ltbG5t7+R3C3v7B4dHxeOTpolTzXiDxTLW7YAaLoXiDRQoeTvRnEaB5K1gdD/3W2OujYjVE04S7kd0oEQoGEUrtcY9Lyx7l71iya24C5B14mWkBBnqveJXtx+zNOIKmaTGdDw3QX9KNQom+azQTQ1PKBvRAe9YqmjEjT9dnDsjF1bpkzDWthSShfp7YkojYyZRYDsjikOz6s3F/7xOiuGdPxUqSZErtlwUppJgTOa/k77QnKGcWEKZFvZWwoZUU4Y2oYINwVt9eZ00qxXvqnLzeF2qVbM48nAG51AGD26hBg9QhwYwGMEzvMKbkzgvzrvzsWzNOdnMKfyB8/kD/z6OpQ==</latexit>

v2f(1)
<latexit sha1_base64="kmkseLmJXDlQC9YhfC5n5VV2bwo=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoMQL2E3KnoMePEYwTwgWcLspDcZMju7zMwGQshHePGgiFe/x5t/4yTZgyYWNBRV3XR3BYng2rjut5Pb2Nza3snvFvb2Dw6PiscnTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWM7ud+a4xK81g+mUmCfkQHkoecUWOl1rhXDcveZa9YcivuAmSdeBkpQYZ6r/jV7ccsjVAaJqjWHc9NjD+lynAmcFbophoTykZ0gB1LJY1Q+9PFuTNyYZU+CWNlSxqyUH9PTGmk9SQKbGdEzVCvenPxP6+TmvDOn3KZpAYlWy4KU0FMTOa/kz5XyIyYWEKZ4vZWwoZUUWZsQgUbgrf68jppViveVeXm8bpUq2Zx5OEMzqEMHtxCDR6gDg1gMIJneIU3J3FenHfnY9mac7KZU/gD5/MHANWOpg==</latexit>

r1<latexit sha1_base64="Dgf/7/x5/6zXMdN4q055bhXyqxc=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKez6wBwDXjxGNA9IljA7mU2GzM4uM71CWPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dQSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38789hPXRsTqEScJ9yM6VCIUjKKVHnTf65crbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUrOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6KYc3PhEpS5IotFoWpJBiT2d9kIDRnKCeWUKaFvZWwEdWUoU2nZEPwll9eJa2LqndZvb6/qtRreRxFOIFTOAcPbqAOd9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AEBzo2X</latexit>

r1<latexit sha1_base64="Dgf/7/x5/6zXMdN4q055bhXyqxc=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKez6wBwDXjxGNA9IljA7mU2GzM4uM71CWPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dQSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38789hPXRsTqEScJ9yM6VCIUjKKVHnTf65crbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUrOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6KYc3PhEpS5IotFoWpJBiT2d9kIDRnKCeWUKaFvZWwEdWUoU2nZEPwll9eJa2LqndZvb6/qtRreRxFOIFTOAcPbqAOd9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AEBzo2X</latexit>

r2<latexit sha1_base64="hLUNtk9EepcT0sXNMEIDWeV+x6I=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KklV7LHgxWNF+wFtKJvtpF262YTdjVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8O/PbT6g0j+WjmSToR3QoecgZNVZ6UP1qv1R2K+4cZJV4OSlDjka/9NUbxCyNUBomqNZdz02Mn1FlOBM4LfZSjQllYzrErqWSRqj9bH7qlJxbZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMT1vyMyyQ1KNliUZgKYmIy+5sMuEJmxMQSyhS3txI2oooyY9Mp2hC85ZdXSata8S4r1/dX5Xotj6MAp3AGF+DBDdThDhrQBAZDeIZXeHOE8+K8Ox+L1jUnnzmBP3A+fwADUo2Y</latexit>

v1f(2)
<latexit sha1_base64="HP43ZRo8lOEJsK/OGUB3qLiaYV0=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoMQL2E3KnoMePEYwTwgWcLspDcZMju7zMwGQshHePGgiFe/x5t/4yTZgyYWNBRV3XR3BYng2rjut5Pb2Nza3snvFvb2Dw6PiscnTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWM7ud+a4xK81g+mUmCfkQHkoecUWOl1rjnheXqZa9YcivuAmSdeBkpQYZ6r/jV7ccsjVAaJqjWHc9NjD+lynAmcFbophoTykZ0gB1LJY1Q+9PFuTNyYZU+CWNlSxqyUH9PTGmk9SQKbGdEzVCvenPxP6+TmvDOn3KZpAYlWy4KU0FMTOa/kz5XyIyYWEKZ4vZWwoZUUWZsQgUbgrf68jppViveVeXm8bpUq2Zx5OEMzqEMHtxCDR6gDg1gMIJneIU3J3FenHfnY9mac7KZU/gD5/MHANKOpg==</latexit>

v1f(2)
<latexit sha1_base64="HP43ZRo8lOEJsK/OGUB3qLiaYV0=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoMQL2E3KnoMePEYwTwgWcLspDcZMju7zMwGQshHePGgiFe/x5t/4yTZgyYWNBRV3XR3BYng2rjut5Pb2Nza3snvFvb2Dw6PiscnTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWM7ud+a4xK81g+mUmCfkQHkoecUWOl1rjnheXqZa9YcivuAmSdeBkpQYZ6r/jV7ccsjVAaJqjWHc9NjD+lynAmcFbophoTykZ0gB1LJY1Q+9PFuTNyYZU+CWNlSxqyUH9PTGmk9SQKbGdEzVCvenPxP6+TmvDOn3KZpAYlWy4KU0FMTOa/kz5XyIyYWEKZ4vZWwoZUUWZsQgUbgrf68jppViveVeXm8bpUq2Zx5OEMzqEMHtxCDR6gDg1gMIJneIU3J3FenHfnY9mac7KZU/gD5/MHANKOpg==</latexit>

v1f(1)
<latexit sha1_base64="bfBXnZhm1hFy5DtTM6IBdKHJdVc=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoMQL2E3KnoMePEYwTwgWcLsZDYZMju7zPQGQshHePGgiFe/x5t/4yTZgyYWNBRV3XR3BYkUBl3328ltbG5t7+R3C3v7B4dHxeOTpolTzXiDxTLW7YAaLoXiDRQoeTvRnEaB5K1gdD/3W2OujYjVE04S7kd0oEQoGEUrtcY9Lyx7l71iya24C5B14mWkBBnqveJXtx+zNOIKmaTGdDw3QX9KNQom+azQTQ1PKBvRAe9YqmjEjT9dnDsjF1bpkzDWthSShfp7YkojYyZRYDsjikOz6s3F/7xOiuGdPxUqSZErtlwUppJgTOa/k77QnKGcWEKZFvZWwoZUU4Y2oYINwVt9eZ00qxXvqnLzeF2qVbM48nAG51AGD26hBg9QhwYwGMEzvMKbkzgvzrvzsWzNOdnMKfyB8/kD/z6OpQ==</latexit>

v2f(1)
<latexit sha1_base64="kmkseLmJXDlQC9YhfC5n5VV2bwo=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoMQL2E3KnoMePEYwTwgWcLspDcZMju7zMwGQshHePGgiFe/x5t/4yTZgyYWNBRV3XR3BYng2rjut5Pb2Nza3snvFvb2Dw6PiscnTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWM7ud+a4xK81g+mUmCfkQHkoecUWOl1rhXDcveZa9YcivuAmSdeBkpQYZ6r/jV7ccsjVAaJqjWHc9NjD+lynAmcFbophoTykZ0gB1LJY1Q+9PFuTNyYZU+CWNlSxqyUH9PTGmk9SQKbGdEzVCvenPxP6+TmvDOn3KZpAYlWy4KU0FMTOa/kz5XyIyYWEKZ4vZWwoZUUWZsQgUbgrf68jppViveVeXm8bpUq2Zx5OEMzqEMHtxCDR6gDg1gMIJneIU3J3FenHfnY9mac7KZU/gD5/MHANWOpg==</latexit>

r3
<latexit sha1_base64="GrDqsde12FLWa2it0847GO+1XsI=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKez6wBwDXjxGNA9IljA76U2GzM4uM7NCWPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dQSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzSRBP6JDyUPOqLHSg+pf9ssVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc1Yc3PuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqt5l9fr+qlKv5XEU4QRO4Rw8uIE63EEDmsBgCM/wCm+OcF6cd+dj0Vpw8plj+APn8wcE1o2Z</latexit>

r1<latexit sha1_base64="Dgf/7/x5/6zXMdN4q055bhXyqxc=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKez6wBwDXjxGNA9IljA7mU2GzM4uM71CWPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dQSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38789hPXRsTqEScJ9yM6VCIUjKKVHnTf65crbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUrOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6KYc3PhEpS5IotFoWpJBiT2d9kIDRnKCeWUKaFvZWwEdWUoU2nZEPwll9eJa2LqndZvb6/qtRreRxFOIFTOAcPbqAOd9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AEBzo2X</latexit>

r2<latexit sha1_base64="hLUNtk9EepcT0sXNMEIDWeV+x6I=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KklV7LHgxWNF+wFtKJvtpF262YTdjVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8O/PbT6g0j+WjmSToR3QoecgZNVZ6UP1qv1R2K+4cZJV4OSlDjka/9NUbxCyNUBomqNZdz02Mn1FlOBM4LfZSjQllYzrErqWSRqj9bH7qlJxbZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMT1vyMyyQ1KNliUZgKYmIy+5sMuEJmxMQSyhS3txI2oooyY9Mp2hC85ZdXSata8S4r1/dX5Xotj6MAp3AGF+DBDdThDhrQBAZDeIZXeHOE8+K8Ox+L1jUnnzmBP3A+fwADUo2Y</latexit>

r2<latexit sha1_base64="hLUNtk9EepcT0sXNMEIDWeV+x6I=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KklV7LHgxWNF+wFtKJvtpF262YTdjVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8O/PbT6g0j+WjmSToR3QoecgZNVZ6UP1qv1R2K+4cZJV4OSlDjka/9NUbxCyNUBomqNZdz02Mn1FlOBM4LfZSjQllYzrErqWSRqj9bH7qlJxbZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMT1vyMyyQ1KNliUZgKYmIy+5sMuEJmxMQSyhS3txI2oooyY9Mp2hC85ZdXSata8S4r1/dX5Xotj6MAp3AGF+DBDdThDhrQBAZDeIZXeHOE8+K8Ox+L1jUnnzmBP3A+fwADUo2Y</latexit>

v1f(1)
<latexit sha1_base64="bfBXnZhm1hFy5DtTM6IBdKHJdVc=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoMQL2E3KnoMePEYwTwgWcLsZDYZMju7zPQGQshHePGgiFe/x5t/4yTZgyYWNBRV3XR3BYkUBl3328ltbG5t7+R3C3v7B4dHxeOTpolTzXiDxTLW7YAaLoXiDRQoeTvRnEaB5K1gdD/3W2OujYjVE04S7kd0oEQoGEUrtcY9Lyx7l71iya24C5B14mWkBBnqveJXtx+zNOIKmaTGdDw3QX9KNQom+azQTQ1PKBvRAe9YqmjEjT9dnDsjF1bpkzDWthSShfp7YkojYyZRYDsjikOz6s3F/7xOiuGdPxUqSZErtlwUppJgTOa/k77QnKGcWEKZFvZWwoZUU4Y2oYINwVt9eZ00qxXvqnLzeF2qVbM48nAG51AGD26hBg9QhwYwGMEzvMKbkzgvzrvzsWzNOdnMKfyB8/kD/z6OpQ==</latexit>

v2f(2)
<latexit sha1_base64="DfHnw+MWTAnlp2mIX3XPvKaamVI=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRahXsruquix4MVjBfsB7VKyabYNzWZDki2UpT/CiwdFvPp7vPlvTNs9aOuDgcd7M8zMCyVn2rjut1PY2Nza3inulvb2Dw6PyscnLZ2kitAmSXiiOiHWlDNBm4YZTjtSURyHnLbD8f3cb0+o0iwRT2YqaRDjoWARI9hYqT3p+1HVv+yXK27NXQCtEy8nFcjR6Je/eoOEpDEVhnCsdddzpQkyrAwjnM5KvVRTickYD2nXUoFjqoNsce4MXVhlgKJE2RIGLdTfExmOtZ7Goe2MsRnpVW8u/ud1UxPdBRkTMjVUkOWiKOXIJGj+OxowRYnhU0swUczeisgIK0yMTahkQ/BWX14nLb/mXdVuHq8rdT+PowhncA5V8OAW6vAADWgCgTE8wyu8OdJ5cd6dj2VrwclnTuEPnM8fAlqOpw==</latexit>

v1f(1)
<latexit sha1_base64="bfBXnZhm1hFy5DtTM6IBdKHJdVc=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoMQL2E3KnoMePEYwTwgWcLsZDYZMju7zPQGQshHePGgiFe/x5t/4yTZgyYWNBRV3XR3BYkUBl3328ltbG5t7+R3C3v7B4dHxeOTpolTzXiDxTLW7YAaLoXiDRQoeTvRnEaB5K1gdD/3W2OujYjVE04S7kd0oEQoGEUrtcY9Lyx7l71iya24C5B14mWkBBnqveJXtx+zNOIKmaTGdDw3QX9KNQom+azQTQ1PKBvRAe9YqmjEjT9dnDsjF1bpkzDWthSShfp7YkojYyZRYDsjikOz6s3F/7xOiuGdPxUqSZErtlwUppJgTOa/k77QnKGcWEKZFvZWwoZUU4Y2oYINwVt9eZ00qxXvqnLzeF2qVbM48nAG51AGD26hBg9QhwYwGMEzvMKbkzgvzrvzsWzNOdnMKfyB8/kD/z6OpQ==</latexit>
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<latexit sha1_base64="DfHnw+MWTAnlp2mIX3XPvKaamVI=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRahXsruquix4MVjBfsB7VKyabYNzWZDki2UpT/CiwdFvPp7vPlvTNs9aOuDgcd7M8zMCyVn2rjut1PY2Nza3inulvb2Dw6PyscnLZ2kitAmSXiiOiHWlDNBm4YZTjtSURyHnLbD8f3cb0+o0iwRT2YqaRDjoWARI9hYqT3p+1HVv+yXK27NXQCtEy8nFcjR6Je/eoOEpDEVhnCsdddzpQkyrAwjnM5KvVRTickYD2nXUoFjqoNsce4MXVhlgKJE2RIGLdTfExmOtZ7Goe2MsRnpVW8u/ud1UxPdBRkTMjVUkOWiKOXIJGj+OxowRYnhU0swUczeisgIK0yMTahkQ/BWX14nLb/mXdVuHq8rdT+PowhncA5V8OAW6vAADWgCgTE8wyu8OdJ5cd6dj2VrwclnTuEPnM8fAlqOpw==</latexit>
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<latexit sha1_base64="ByRPEQpBk2PgsjxWGU5lS9Tya+o=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBDiJewmih4DXjxGMA9IljA76U2GzM4uM7OBEPIRXjwo4tXv8ebfOEn2oIkFDUVVN91dQSK4Nq777Wxsbm3v7Ob28vsHh0fHhZPTpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApG93O/NUaleSyfzCRBP6IDyUPOqLFSa9yrhiXvqlcoumV3AbJOvIwUIUO9V/jq9mOWRigNE1Trjucmxp9SZTgTOMt3U40JZSM6wI6lkkao/eni3Bm5tEqfhLGyJQ1ZqL8npjTSehIFtjOiZqhXvbn4n9dJTXjnT7lMUoOSLReFqSAmJvPfSZ8rZEZMLKFMcXsrYUOqKDM2obwNwVt9eZ00K2WvWr55vC7WKlkcOTiHCyiBB7dQgweoQwMYjOAZXuHNSZwX5935WLZuONnMGfyB8/kDAl2Opw==</latexit>

v3f(1)
<latexit sha1_base64="ByRPEQpBk2PgsjxWGU5lS9Tya+o=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBDiJewmih4DXjxGMA9IljA76U2GzM4uM7OBEPIRXjwo4tXv8ebfOEn2oIkFDUVVN91dQSK4Nq777Wxsbm3v7Ob28vsHh0fHhZPTpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApG93O/NUaleSyfzCRBP6IDyUPOqLFSa9yrhiXvqlcoumV3AbJOvIwUIUO9V/jq9mOWRigNE1Trjucmxp9SZTgTOMt3U40JZSM6wI6lkkao/eni3Bm5tEqfhLGyJQ1ZqL8npjTSehIFtjOiZqhXvbn4n9dJTXjnT7lMUoOSLReFqSAmJvPfSZ8rZEZMLKFMcXsrYUOqKDM2obwNwVt9eZ00K2WvWr55vC7WKlkcOTiHCyiBB7dQgweoQwMYjOAZXuHNSZwX5935WLZuONnMGfyB8/kDAl2Opw==</latexit>

v2f(1)
<latexit sha1_base64="kmkseLmJXDlQC9YhfC5n5VV2bwo=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoMQL2E3KnoMePEYwTwgWcLspDcZMju7zMwGQshHePGgiFe/x5t/4yTZgyYWNBRV3XR3BYng2rjut5Pb2Nza3snvFvb2Dw6PiscnTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWM7ud+a4xK81g+mUmCfkQHkoecUWOl1rhXDcveZa9YcivuAmSdeBkpQYZ6r/jV7ccsjVAaJqjWHc9NjD+lynAmcFbophoTykZ0gB1LJY1Q+9PFuTNyYZU+CWNlSxqyUH9PTGmk9SQKbGdEzVCvenPxP6+TmvDOn3KZpAYlWy4KU0FMTOa/kz5XyIyYWEKZ4vZWwoZUUWZsQgUbgrf68jppViveVeXm8bpUq2Zx5OEMzqEMHtxCDR6gDg1gMIJneIU3J3FenHfnY9mac7KZU/gD5/MHANWOpg==</latexit>

v2f(1)
<latexit sha1_base64="kmkseLmJXDlQC9YhfC5n5VV2bwo=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoMQL2E3KnoMePEYwTwgWcLspDcZMju7zMwGQshHePGgiFe/x5t/4yTZgyYWNBRV3XR3BYng2rjut5Pb2Nza3snvFvb2Dw6PiscnTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWM7ud+a4xK81g+mUmCfkQHkoecUWOl1rhXDcveZa9YcivuAmSdeBkpQYZ6r/jV7ccsjVAaJqjWHc9NjD+lynAmcFbophoTykZ0gB1LJY1Q+9PFuTNyYZU+CWNlSxqyUH9PTGmk9SQKbGdEzVCvenPxP6+TmvDOn3KZpAYlWy4KU0FMTOa/kz5XyIyYWEKZ4vZWwoZUUWZsQgUbgrf68jppViveVeXm8bpUq2Zx5OEMzqEMHtxCDR6gDg1gMIJneIU3J3FenHfnY9mac7KZU/gD5/MHANWOpg==</latexit>

Fig. 1: The figure provides an illustration of three different single-
selection covering problems with N = {1, 2} where the potential
assignments (or actions) of each agent are highlighted by the green ar-
rows. For the covering problem on the left, there are two resources r1
and r2 with valuations v1 and v2 respectively. The action sets of both
agents are symmetric and of the form A1 = A2 = {{r1}, {r2}}. The
covering problem in the middle is identical to that on the left, with the
sole exception being that the action set of agent 1 is now of the form
A1 = {{r1}}, meaning that agent 1 is now only capable of choosing
resource r1. For the covering problem on the right, there are three
resources r1, r2, and r3 with valuations v1, v2, and v3 respectively.
The action set for each agent is now of the form A1 = {{r1}, {r2}}
and A2 = {{r2}, {r3}}. Here, the agents’ action sets are no longer
symmetric as agent 1 is not able to cover resource {r3} and similarly
agent 2 is not able to cover resource {r1}. It is important to highlight
that the structure of the agents’ action sets is part of the problem
definition, i.e., not a design choice. Accordingly, for any problem
the goal is to find the optimal allocation within the given admissible
assignment set. In general, the allocation choices of an agent need
not be restricted to singletons as highlighted above. Lastly, the two
payoff matrices highlight the utility function given in (3) of both
agents for the left and right scenarios respectively. Agent 1 is the
Row player, Agent 2 is the Column player, and the numbers in each
cell correspond to the agents’ payoffs for the given joint action. Here,
the top left entry in each cell is agent 1’s payoff and the bottom right
entry is agent 2’s payoff for that particular joint action. Note that an
optimal allocation is a feasible allocation that optimizes the maximum
coverage objective, i.e., aopt ∈ argmaxa∈AW (a). On the other
hand, a Nash equilibrium is an admissible allocation ane ∈ A that
satisfies Ui(a

ne
i , a

ne
−i) ≥ Ui(ai, a

ne
−i), for all i ∈ N and ai ∈ Ai.

The design of f(·) impacts the resulting set of Nash equilibria (as it
impacts what function Ui(·) each agent utilizes), but has no impact
on the optimal allocation. Hence, our design goal is to design f(·)
to make the resulting Nash equilibria close in performance to the
optimal allocation.

r ∈ ai}, and f : N → R defines the payoff awarded to the
agent at each resource in the allocation a. In order to evaluate
this utility, it is important to highlight that each agent i is
required to observe (i) the resources in its action set and (ii)
the number of other agents covering each of these resources.
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We will refer to f as the distribution rule throughout.2 We
will express such a n-agent covering game by the tuple Gn =
{N,R, {Ai}i∈N , f, {vr}r∈R} and drop the subscripts on the
above sets, e.g., denote {vr}r∈R as {vr}, for brevity.

The goal of this paper is to derive the distribution rule f that
optimizes the performance of the emergent collective behavior.
Here, we focus on the concept of pure Nash equilibrium as
a model for this emergent collective behavior [29]. A pure
Nash equilibrium, which we will henceforth refer to as just an
equilibrium, is defined as an allocation ane ∈ A such that for
all i ∈ N and for all ai ∈ Ai, we have

Ui(a
ne
i , a

ne
−i) ≥ Ui(ai, ane

−i).

In essence, an equilibrium represents an allocation for which
no single agent has a unilateral incentive to alter its covering
choice given the choices of the other agents. It is important
to highlight that an equilibrium might not exist in a general
game; however, when restricting attention to a covering game
as defined above, an equilibrium is guaranteed to exist as the
resulting game is known to be a congestion game [28].3

We will measure the efficiency of an equilibrium allocation
in a game Gn through two commonly studied measures,
termed price of anarchy and price of stability, defined as

PoA(Gn) = min
ane∈NE(Gn)

W (ane)

W (aopt)
≤ 1,

PoS(Gn) = max
ane∈NE(Gn)

W (ane)

W (aopt)
≤ 1,

where we use NE(Gn) to denote the set of Nash equilibria
of Gn. In words, the price of anarchy characterizes the
performance of the worst equilibrium of Gn relative to the
performance of the optimal allocation, while the price of
stability focuses on the best equilibrium in the game Gn. Such
distinction is required as equilibria are guaranteed to exists for
the class of utilities considered in (3), but in general they are
not unique. By definition 0 ≤ PoA(Gn) ≤ PoS(Gn) ≤ 1.

Throughout, we require that a system designer commits to
a distribution rule without explicit knowledge of particular
covering problem. To that end, the system operator will be
aware of the maximum number of agents in the game n,
but will have no specific knowledge of the actual number
of agents, the resource set R and valuations {vr}, as well
as the agents’ action sets {Ai}. For example, all of the
three examples highlighted in Figure 1 represent instances
of covering problems with at most two agents, and when
designing f a system designer has no a priori knowledge
about which specific instance will be realized. Note that once a
particular distribution rule f has been chosen, this distribution
rule defines a game for any realization of the parameters.
The objective of the system designer is to provide desirable

2The structure of utility functions considered in (3) is common in the
literature and falls under the framework of networked cost-sharing games
or distributed welfare games, c.f., [26]. This paper focuses on characterizing
the optimal performance guarantees attainable with this utility structure. Once
such guarantees are known, one can evaluate whether or not it is desirable to
raise or lower the informational dependence on the utility structure.

3There is a rich body of literature that provides distributed algorithms that
can coordinate the agents to an equilibrium for the class of games considered
in this paper [11], [22], [27], [39], [40]. However, we will not discuss such
results due to space considerations.

performance guarantees irrespective of the realization of these
parameter, even if they where chosen by an adversary. To that
end, let Gnf denote the family of covering games with at most
n agents that utilize a given distribution rule f , i.e., any game
G ∈ Gnf is of the above form. We will measure the quality of
a distribution rule f by a worst-case analysis over the set of
induced games Gnf , which is the natural extension of the price
of anarchy and price of stability defined above, i.e.,

PoA(Gnf ) = min
Gn∈Gn

f

PoA(Gn), (4)

PoS(Gnf ) = min
Gn∈Gn

f

PoS(Gn). (5)

The price of anarchy PoA(Gnf ) for a given distribution rule f
provides a bound on the quality of any equilibrium irrespective
of the agent set N , resource set R, action sets {Ai}, and
resource valuations {vr}. The price of stability, on the other
hand, provides similar performance guarantees when restrict-
ing attention to the best equilibrium.4

III. PRELIMINARY RESULTS

In this section we provide a preliminary study on the price of
anarchy and price of stability for three well-studied distribution
rules. Before doing so, we begin by presenting two general
results for characterizing the price of anarchy and price of
stability in such games where the distribution rule f is non-
increasing, i.e., f ∈ Fn where

Fn = {f ∈ Rn : f(k) ≥ f(k + 1),∀k ∈ {1, . . . , n− 1}} .

This result strengthens the results presented in [12], [31],
which focus purely on the set of positive non-increasing
distribution rules that satisfies the constraint f(1) = 1, i.e.,

Fn1 =
{
f ∈ Rn≥0 : f ∈ Fn, f(1) = 1

}
.

A. A Supporting Result for Price of Anarchy

Our first lemma provides a tight characterization of the price
of anarchy for any distribution rule f ∈ Fn. The results
demonstrate that the relevant distribution rules are precisely
the set of distribution rules given by Fn1 .

Lemma 3.1: Let n ≥ 2. The following properties hold:
(i) The price of anarchy associated with any distribution rule
f ∈ Fn1 is

PoA(Gnf ) =
1

1 + χnf
, (6)

where

χnf = max
j≤n−1

{(j + 1)f(j + 1)− 1, jf(j)− f(j + 1), jf(j + 1)} .
(7)

(ii) If f(1) ≤ 0 or f(k) < 0 for any k ≥ 2, the price of
anarchy satisfies PoA(Gnf ) = 0.

4One motivation for studying the price of stability is the availability
of distributed learning rules that lead the collective behavior to the best
equilibrium, e.g., [3], [4], [25]. However, it is important to note that the
time complexity, e.g., mixing times, associated with such learning rules can
be undesirable depending on the structure of the underlying game [5].
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(iii) The optimal price of anarchy over the set of distribution
rules Fn is given by

max
f∈Fn

PoA(Gnf ) = 1− 1
1

(n−1)(n−1)! +
∑n−1
i=0

1
i!

, (8)

which satisfies

lim
n→∞

max
f∈Fn

PoA(Gnf ) = 1− 1/e. (9)

(iv) Lastly, a distribution rule f? ∈ Fn that achieves the
optimal price of anarchy in (8) is unique and of the form

f?(j) = (j − 1)!

(
1

(n−1)(n−1)! +
∑n−1
i=j

1
i!

1
(n−1)(n−1)! +

∑n−1
i=1

1
i!

)
, j ≤ n. (10)

We will refer to the optimal distribution rule given in (10) as
the Gairing distribution rule.
Proof: Part (i) merely restates the results given [12], [31],
c.f., Theorem 2 in [31]. We will prove Part (ii) of this lemma
by constructing a specific game instance where the price
of anarchy is 0, hence implying that the price of anarchy
over the class of games Gnf is also 0. Suppose f(1) = 0
and consider a single-selection maximum coverage problem
with three resources {r1, r2, r3} and valuations v1, v2, and
v3 = 0. Furthermore, suppose A1 = {{r1}, {r2}} and
Aj = {{r3}} for all agents j ∈ {2, . . . , n}. For any resource
valuations v1 > v2, the action profile (r2, r3, . . . , r3) is an
equilibrium while the action profile (r1, r3, . . . , r3) is the
optimal allocation. Since v1 can be arbitrarily large relative
to v2, this completes the proof. A similar class of examples
can be constructed for the case where f(k) < 0 for some
k ≥ 2. For Part (iii), consider the family of distribution rules
Fn+ =

{
f ∈ Rn≥0 : f ∈ Fn, f(1) > 0

}
. Building upon Part

(ii), we know that

max
f∈Fn

PoA(Gnf ) = max
f∈Fn

+

PoA(Gnf ) = max
f∈Fn

1

PoA(Gnf ), (11)

where the second equality comes from the fact that the price
of anarchy is invariant to scaling, i.e., PoA(Gnf ) = PoA(Gnα·f )
for any f ∈ Fn and α > 0. Part (iv) follows from the results
given [12], [31] coupled with the results in Part (iii), i.e., there
is no loss in restricting attention to distribution rules to Fn1 .5

2

B. A Supporting Result for Price of Stability
In this section we provide a characterization of the price of

stability for any distribution rule f ∈ Fn1 . Our result provides
an upper-bound on the price of anarchy for arbitrary settings.
However, this bound is tight if we restrict attention to single-
selection games.

Theorem 3.1: Let n ≥ 2 and consider any distribution rule
f ∈ Fn1 . The price of stability associated with the induced
family of games Gnf satisfies

PoS(Gnf ) ≤ min
1≤j≤n

{
1

1 + (j − 1)f(j)

}
. (12)

5Interestingly, none of the results associated with Lemma 3.1 require f
to be non-increasing. However, we assume that f is non-increasing to be
consistent with the forthcoming results on price of stability that require this
property.

Further, the optimal price of stability satisfies

max
f∈F

PoS(Gnf ) = 1, (13)

and a distribution rule that achieves this price of stability over
the induced games Gnf is the marginal contribution distribution
rule defined as

fmc(j) =

{
1 if j = 1,
0 otherwise. (14)

Lastly, (12) is satisfied with equality for single-selection
covering games with n agents.

Note that proving a bound on the price of stability is
often technically challenging, as we need to perform a worst-
case analysis over a reduced set of equilibria, i.e., over the
best-performing equilibria. As a result of this, the proof of
Theorem 3.1 is non-trivial, and therefore deferred to the
Appendix.

C. Analysis of Existing Distribution Rules

We will now proceed with our analysis of three well-known
distribution rules. The first distribution rule that we focus on
is the equal share distribution rule, which is defined as

f es(j) =
1

j
, ∀j ≥ 1. (15)

Corollary 3.1: Consider the class of maximum coverage
games Gnfes with the equal share distribution rule f es and at
most n agents. The price of anarchy and price of stability over
the set of games Gnfes satisfies

lim
n→∞

PoS(Gnfes) = 1/2,

lim
n→∞

PoA(Gnfes) = 1/2.

Proof of Corollary 3.1: We will start with the price of
anarchy result. First, note that f es ∈ Fn1 . Using Lemma 3.1,
the price of anarchy is PoA(Gnfes) = 1

1+χn
fes

where

χnfes = max
j≤n−1

{
0, 1− 1

j + 1
,

j

j + 1

}
=
n− 1

n
. (16)

Accordingly, we have that

lim
n→∞

PoA(Gnfes) = lim
n→∞

1

1 + n−1
n

= 1/2.

Moving to the price of stability, we know that PoS(Gnfes) ≥
PoA(Gnfes) by definition. Invoking Theorem 3.1, we have that

PoS(Gnf ) ≤ min
1≤j≤n

{
1

1 + (j − 1)f(j)

}
=

≤ 1

1− (n− 1) 1
n

,

= PoA(Gnf ).

Since PoA(Gnfes) ≤ PoS(Gnfes) by definition, we have that
PoA(Gnfes) = PoS(Gnfes) which completes the result. 2

The second distribution rule that we focus on is the marginal
contribution distribution rule as defined in (14).

Corollary 3.2: Consider the class of maximum coverage
games Gnfmc with the marginal cost distribution rule fmc and
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at most n agents. The price of anarchy and price of stability
over the set of games Gnfmc satisfies

lim
n→∞

PoS(Gnfmc) = 1,

lim
n→∞

PoA(Gnfmc) = 1/2.

Proof of Corollary 3.2: We will start with the price of
anarchy result. Using Lemma 3.1, the price of anarchy is
PoA(Gnfmc) = 1

1+χn
fmc

where χnfmc = 1, i.e., the maximum
of (7) is attained for j = 1. Accordingly, the price of
anarchy is PoA(Gnfmc) = 1/2. With regards to the price of
stability, it is well-known that the price of stability satisfies
PoS(Gnfmc) = 1. This follows from [27] as the resulting game
is a potential game with potential function coinciding with
the system welfare W . The fact that the potential function
coincides with W can be easily seen upon substituting the
expression for fmc in the potential in (37). This completes
the proof. 2

The last distribution rule that we focus on is the Gairing
distribution rule given in (10).

Corollary 3.3: Consider the class of maximum coverage
games Gnf? with the Gairing distribution rule f? defined in
(10) and at most n agents. The price of anarchy and price of
stability over the set of games Gnf? satisfies

lim
n→∞

PoS(Gnf?) = 1− 1/e,

lim
n→∞

PoA(Gnf?) = 1− 1/e.

Proof of Corollary 3.3: The price of anarchy result comes
directly from Lemma 3.1. With regards to the price of stability,
invoking Theorem 3.1 gives us

PoS(Gnf?) ≤ min
1≤j≤n

{
1

1 + (j − 1)f?(j)

}
≤ 1

1 + (n− 1)f?(n)

= 1− 1
1

(n−1)(n−1)! +
∑n−1
i=0

1
i!

= PoA(Gnf?).

Hence, PoS(Gnf?) = PoA(Gnf?) which completes the result. 2

The performance guarantees associated with these three
distribution rules is summarized in Figure 2. First, note that
there is never an incentive to utilize the equal share distribution
rule as the marginal contribution distribution rule achieves
the same price of anarchy guarantees while also ensuring a
better price of stability (1 as opposed to 1/2). The comparison
between the marginal contribution distribution rule and the
Gairing distribution rule is not as straightforward. If the goal is
to have a better price of anarchy, then the Gairing distribution
rule is the better choice and one inherits a suboptimal price of
stability (1−1/e as opposed to 1). If the goal is to have a better
price of stability, then the marginal contribution distribution
rule is the better choice and one inherits a suboptimal price
of anarchy (1/2 as opposed to 1 − 1/e). The focus of the
ensuing sections is on the existence of alternative distribution
rules f that provide a more desirable balance between these
two efficiency guarantees.

j f es(j) fmc(j) f?(j)
1 1 1 1
2 1/2 0 0.418
3 1/3 0 0.254
4 1/4 0 0.180
5 1/5 0 0.139
6 1/6 0 0.113
7 1/7 0 0.095
8 1/8 0 0.082
9 1/9 0 0.072
10 1/10 0 0.065

0 0.5 1
0

0.5

1
fmc

f es
f?

PoA

Po
S

Fig. 2: On the left, distribution rule values for the equal share
distribution rule in (15), marginal cost distribution rule in (14), and
the Gairing distribution rule in (10) for the case when n = 10. On
the right, corresponding prices of anarchy and prices of stability as
n→∞.

IV. THE TRADE-OFF BETWEEN THE PRICE OF STABILITY
AND PRICE OF ANARCHY

The goal of this paper is to investigate the design of
distribution rules that optimize the metrics introduced in (4)
and (5). The distribution rules highlighted in the previous
section hint at the fact that there may be a fundamental trade-
off between the price of anarchy and price of stability. That
is, optimizing the price of anarchy necessarily comes at the
expense of the price of stability (and vice versa). This section
provides a characterization of the precise trade-off between
these two important performance measures.

A. Characterizing the Trade-off

In this section we provide our first main result that charac-
terizes the inherent tension between the price of anarchy and
price of stability as design objectives in multiagent maximum
coverage problems. For the remainder of the manuscript,
let F = limn→∞ Fn1 denote the set of all relevant dis-
tribution rules, i.e., any distribution rule f ∈ F satisfies
f : N → R, f(1) = 1, and f is non-increasing. Further,
let Gf = limn→∞ Gnf capture all maximum coverage games
with an arbitrary number of players and a given distribution
rule f ∈ F . First, note that for any f ∈ F and any n ≥ 1, the
set of games Gnf is well defined, even though certain elements
of f might not utilized. Second, for any f ∈ F and n ≥ 1, the
price of anarchy (and similarly the price of stability) satisfies
PoA(Gf ) ≤ PoA(Gnf ) since Gnf ⊂ Gf . .

Theorem 4.1: Consider the class of maximum coverage
games introduced in Section II. The following holds:
(i) The optimal price of anarchy satisfies

max
f∈F

PoA(Gf ) = 1− 1/e. (17)

(ii) Given a desired price of anarchy α ∈ [0, 1/2], the best
attainable price of stability satisfies

max
f∈F :PoA(Gf )≥α

PoS(Gf ) = 1. (18)

(iii) Given a desired price of anarchy α ∈ (1/2, 1− 1/e] and
n ≥ 2, the best attainable price of stability satisfies

max
f∈F :PoA(Gn

f )≥α
PoS(Gnf ) ≤ Z(α, n), (19)
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where Z(α, n) equals

1

1 + max
1≤j≤n−1

j j!
(

1−
(

1
α − 1

)∑j
i=1

1
i!

) . (20)

The bound in (19) is satisfied with equality if we restrict
attention to single-selection maximum coverage games.

(iv) Given a desired price of anarchy α = 1 − 1/e, the best
attainable price of stability satisfies

max
f∈F :PoA(Gf )≥1−1/e

PoS(Gf ) = 1− 1/e. (21)

Theorem 4.1 confirms the intuition gleaned in the previous
section that there is indeed a trade-off between the price of
anarchy (performance guarantees associated with the worst
performing equilibrium) and price of stability (performance
guarantees associated with the best performing equilibrium).
Hence, there is an inherent tension between these two mea-
sures of efficiency as improving the performance of the worst
equilibria necessarily comes at the expense of the performance
of the best equilibria, and vice versa. The explicit trade-off
given in Theorem 4.1 is illustrated in Figure 3. In particular,
Theorem 4.1 establishes that there does not exist a distribution
rule f that attains joint price of stability and price of anarchy in
the red region of the figure. The expression of Z(α, n) defines
this trade-off and satisfies limn→∞ Z(1− 1/e, n) = 1− 1/e.
The last result demonstrates that this trade-off curve is tight in
the context of single-selection maximum coverage games, i.e.,
there are distribution rules f that achieve joint price of anarchy
and price of stability guarantees highlighted on the curve
Z(α, n). The specific distribution rules will be characterized
in the proof of Theorem 4.1.

B. Proof of Theorem 4.1

In this section we complete the Proof of Theorem 4.1.
Part (i) follows immediately from Lemma 3.1. Part (ii) follows
from Corollary 3.2. We now turn the attention to Part (iii).
Towards this goal, let F(α), α ∈ (0, 1] be the family of
distribution rules that guarantee a price of anarchy of at least
α, i.e.,

F(α) = {f ∈ F : PoA(Gnf ) ≥ α}.

Additionally, let

PoS(Gn;α) = max
f∈F(α)

PoS(Gnf ) (22)

be the best achievable price of stability given that the price of
anarchy is guaranteed to exceed α, where α ∈ (0, 1).

We now prove that (19) holds with the equality sign,
when restricting to single-selection covering games. It follows
immediately that (19) hold with the inequality sign for general
(not necessarily single-selection) covering game.

Restricting our attention to single-selection covering games,
from Theorem 3.1 and (22) we have

PoS(Gn;α) = max
f∈F(α)

min
1≤j≤n

{
1

1 + (j − 1)f(j)

}
or equivalently

PoS(Gn;α) = max
f∈F(α)

min
1≤j≤n−1

{
1

1 + jf(j + 1)

}
, (23)
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Fig. 3: The figure provides an illustration of the inherent trade-off
between the price of anarchy and price of stability. First, note that the
gray region is not achievable since 0 ≤ PoA(Gf ) ≤ PoS(Gf ) ≤ 1 by
definition. Theorem 4.1 demonstrates that the red region is also not
achievable. That is, there does not exist a distribution rule with joint
price of anarchy and price of stability guarantees in the red region.
For example, if the desired price of anarchy is α ≤ 1/2, then a price
of stability of 1 is attainable while meeting this price of anarchy
demand. However, if the desired price of anarchy is α = 1 − 1/e,
then a price of stability of 1 is no longer attainable. In fact, the best
attainable price of stability is now also 1− 1/e.

since for j = 1 it is (j − 1)f(j) = 0, and (j − 1)f(j) ≥ 0
for all other 2 ≤ j ≤ n. Thanks to Lemma 3.1, the constraint
PoA(Gnf ) ≥ α can be written as

jf(j)−
(

1

α
− 1

)
≤ f(j + 1) 1 ≤ j ≤ n− 1,

jf(j + 1) ≤
(

1

α
− 1

)
1 ≤ j ≤ n− 1,

(j + 1)f(j + 1)− 1 ≤
(

1

α
− 1

)
1 ≤ j ≤ n− 1.

Thus, the optimization problem in (23) is equivalent to

min
f

max
1≤j≤n−1

jf(j + 1)

s.t. jf(j)−
(

1

α
− 1

)
≤ f(j + 1) 1 ≤ j ≤ n− 1,

jf(j + 1) ≤ 1

α
− 1 1 ≤ j ≤ n− 1,

(j + 1)f(j + 1) ≤ 1

α
1 ≤ j ≤ n− 1,

f(j) ≥ 0 1 ≤ j ≤ n,
f(1) = 1.

Recall that f(1) = 1. Recursively applying the first set of
inequalities, it follows that for every j with 1 ≤ j ≤ n− 1

jf(j + 1) ≥ j j!
(

1−
(

1

α
− 1

) j∑
i=1

1

i!

)
.
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Since our objective is precisely to minimize the quantity
max1≤j≤n−1 jf(j + 1), we find a candidate solution by
first solving for the distribution rule that satisfies the n − 1
linear inequalities with equality, or set it to zero if the term
jf(j)− (1/α− 1) is negative. Such a distribution rule can be
computed recursively, and is of the form

f̂(j) = max

{
(j − 1)!

(
1−

(
1

α
− 1

) j−1∑
i=1

1

i!

)
, 0

}
.

By construction, the above distribution satisfies f̂(1) = 1 as
well as the first and fourth set of constraints in the optimization
problem above. In the following we verify that f̂ also satisfies
the remaining set of constraints, and thus is optimal. Note that
the terms f̂(k), k > n, are irrelevant in the given analysis.
We now show that f̂ also satisfies the second and third set
of constraints. We begin with the second set of constraints,
i.e., we wish to show jf̂(j + 1) ≤ (1/α− 1) for all α with
1
2 < α ≤ maxf∈F PoA(Gnf ) and for all j with 1 ≤ j ≤ n−1.
This is equivalent to

j j!

(
1−

(
1

α
− 1

) j∑
i=1

1

i!

)
≤ 1

α
− 1 ,

as the result follows readily when f̂ takes the value f̂(j) = 0.
After some manipulation this is equivalent to showing

1

j j!
+

j∑
i=1

1

i!
≥
(

1

α
− 1

)−1

for all α with 1
2 < α ≤ maxf∈F PoA(Gnf ) and for all j with

1 ≤ j ≤ n − 1. Since α ≤ maxf∈F PoA(Gnf ), the result
follows if we are able to prove the above inequality for α =
maxf∈F PoA(Gnf ), i.e.,

1

j j!
+

j∑
i=1

1

i!
≥
(

1

maxf∈F PoA(Gnf )
− 1

)−1

. (24)

The expression for the optimal price of anarchy was found
[12, Corollary 1], and amounts to

max
f∈F

PoA(Gnf ) = 1− 1
1

(n−1)(n−1)! +
∑n−1
i=0

1
i!

.

Replacing this in (24), we are left to prove that for all 1 ≤
j ≤ n− 1

1

j j!
+

j∑
i=0

1

i!
≥ 1

(n− 1)(n− 1)!
+

n−1∑
i=0

1

i!
. (25)

To do so, let us define the function g : N→ R as

g(j) =
1

j j!
+

j∑
i=0

1

i!
,

and observe that g(j) is non-increasing in j. To see this note

that

g(j) ≥ g(j + 1) ⇐⇒

1

j j!
+

j∑
i=0

1

i!
≥ 1

(j + 1) (j + 1)!
+

j+1∑
i=0

1

i!
⇐⇒

1

j j!
− 1

(j + 1)(j + 1)!
≥ 1

(j + 1)!
⇐⇒

1

j
≥ 1

j + 1
,

which holds for any j ∈ N. Thus, we conclude that for j with
1 ≤ j ≤ n− 1 it holds

g(j) ≥ g(n− 1),

which is precisely the desired result in (25), thus proving that
the third set of inequalities is satisfied.

We now turn our attention to the third set of constraints, and
wish to prove that (j + 1)f̂(j + 1) ≤ 1/α for all α with 1

2 <
α ≤ maxf∈F PoA(Gnf ) and for all j with 1 ≤ j ≤ n−1. This
follows directly as a consequence of jf̂(j + 1) ≤ (1/α − 1)
previously shown. Indeed

jf̂(j + 1) ≤ 1

α
− 1 ⇐⇒ f̂(j + 1) ≤ 1

j

(
1

α
− 1

)
,

which implies the desired result

(j + 1)f̂(j + 1) ≤ j + 1

j

(
1

α
− 1

)
=

(
1

α
− 1

)
+

1

j

(
1

α
− 1

)
≤
(

1

α
− 1

)
+ 1 =

1

α
,

where the last inequality follows from j ≥ 1 and 1/α−1 ≤ 1
(due to α > 1/2). This concludes the above reasoning, and
shows that f̂ is a solution to (23). Using Theorem 3.1 on such
distribution rule gives the desired result.

The result in Part (iv) can be proven by replacing α in (20)
with the optimal price of anarchy from [12], [31], i.e., set

α? = 1− 1
1

(n−1)(n−1)! +
∑n−1
i=0

1
i!

.

After some manipulation, we obtain

PoS(Gn;α?) =

1
(n−1)(n−1)! +

∑n−1
i=1

1
i!

1
(n−1)(n−1)! +

∑n−1
i=0

1
i!

= max
f∈F

PoA(Gnf ).

Taking the limit as n→∞ gives the final result. 2

V. USING INFORMATION TO BREACH THE ANARCHY /
STABILITY FRONTIER

The previous section highlights a fundamental tension be-
tween the price of stability and price of anarchy for the given
covering problem when restricted to local agent objective
functions of the form (3). In this section, we challenge the
role of locality in these fundamental trade-offs. That is, we
show how to move beyond the price of anarchy / price of
stability frontier given in Theorem 4.1 if we allow the agents
to condition their choice on a higher degree of system-level
information. To do so, we restrict our attention to single-
selection covering games.
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With this goal in mind, we introduce a minimal and easily
attainable piece of system-level information that can permit the
realization of decision-making rules with efficiency guarantees
beyond this frontier. To that end, for each allocation a ∈ A we
define the information flow graph (V,E) where each node of
the graph represents an agent and we construct a directed edge
i→ j if ai ∈ Aj for i 6= j (no self loops). This describes the
situation in which the resource selected by agent i in allocation
a also belongs to the allocation set of agent j. Based on this
allocation-dependent graph, we define for each agent i the
set Ni(a) ⊆ N consisting of all the agents that can reach i
through a path in the graph (V,E). Similarly, for each agent
i we define

Qi(a) = (∪j∈Ni(a)Aj) ∪ Ai, (26)

which consists of the union of Ai and all the sets of other
agents that can reach i through a path in the graph. An example
is shown in Figure 4. Building upon this graph we define the
following quantities:

Vi(a) = max
r∈Ai\a−i

vr, (27)

xi(a) = max
r∈Qi(a)\a

vr. (28)

The term Vi(a) captures the highest valued resource in agent
i’s choice set Ai that is not covered by any agent. If the set
Ai \a−i is empty, we set Vi(a) = 0. Similarly, the term xi(a)
captures the highest-valued resource in the enlarged set Qi(a)
not currently covered by any other agent. If the set Qi(a) \ a
is empty, we set xi(a) = 0.

We are now ready to specify the information based covering
game with a set of agents N , where each agent has an action
set Ai ⊆ R. Here, we consider a state-based distribution rule
that toggles between the two extreme optimal distribution rules
f? and fmc. More formally, the distribution rule for agent i
is now of the form

f sb
i (ai = r, a−i) =

{
fmc(|a|r) if Vi(a) ≥ xi(a),

f?(|a|r) otherwise,
(29)

and the corresponding utilities are given by

Ui(ai = r, a−i) = vr · f sb
i (a),

as we allow the system-level information xi(a) and Vi(a) to
prescribe which distribution rule each agent applies. We denote
with f sb = {f sb

i }i∈N the collection of distribution rules in
(29) and informally refer to it as the state-based distribution
rule. Throughout, we express the distribution rule as merely
f sb
i (a) instead of f sb

i (xi(a), Vi(a)) for brevity.
The next theorem demonstrates how f sb attains performance

guarantees beyond the price of stability / price of anarchy
frontier established in Theorem 4.1.

Theorem 5.1: Consider any single-selection maximum cov-
erage game with a state-based distribution rule f sb as defined
above. First, an equilibrium is guaranteed to exist in any game
G ∈ Gfsb . Furthermore, the price of anarchy and price of
stability associated with the induced family of games Gfsb are

PoS(Gfsb) =1,

PoA(Gfsb) = max
f∈F

PoA(Gf ) = 1− 1

e
.

Agent i Ni(a) Qi(a)
1 {2, 3, 4} A1 ∪ A2 ∪ A3 ∪ A4

2 {3, 4} A2 ∪ A3 ∪ A4

3 {2, 4} A2 ∪ A3 ∪ A4

4 {2, 3} A2 ∪ A3 ∪ A4

5 ∅ A5

Fig. 4: Example of graph (V,E). The setsNi(a) and Qi(a) are
enumerated for each agent in the table on the right. Observe
that the graph (V,E) as well as the sets Ni(a) and Qi(a) are
allocation dependent.

Recall from Theorem 4.1 that a consequence of attaining a
price of anarchy of 1 − 1/e was a price of stability also of
1−1/e and this was achieved by f? defined in (10). Using the
state-based rule given in (29), a system designer can achieve
the optimal price of anarchy without any consequences for
the price of stability. Hence, the identified piece of system-
level information was crucial for moving beyond the inherited
performance limitations by adhering to our notion of local
information. Whether alternative forms of system-level infor-
mation could move us beyond these guarantees, or achieve
these guarantees with less information, is an open question.

A. Proof of Theorem 5.1
We will now present the proof of Theorem 5.1. For

readability, we will split the proof into the following two
subsections focusing on the price of anarchy and price of
stability respectively.

1) Proof of PoS Result: We begin our proof with a lemma
that identifies an important structure regarding the state based
distribution rule f sb.

Lemma 5.1: Let a be any allocation. Then for each agent
i ∈ N , one of the following two statements is true.

- Ui(a
′
i = r, a−i) = vr · fmc(|a−i|+ 1), ∀a′i ∈ Ai; or

- Ui(a
′
i = r, a−i) = vr · f?(|a−i|+ 1), ∀a′i ∈ Ai.

Informally, this lemma states that for a given allocation
a, the state based distribution rule will either evaluate every
resource at f? or fmc for a given agent i.

Proof of Lemma 5.1 Let a be any allocation and i be any
agent. Extend the definition of xi(a) in (28) as

yi(a) = max
r∈(Qi(a)\a)∩Ai

vr, (30)

zi(a) = max
r∈(Qi(a)\a)\Ai

vr, (31)

and note that xi(a) = max{yi(a), zi(a)}. First observe that
for any a′i ∈ Ai: (i) yi(a) ≤ Vi(a); (ii) zi(a) = zi(a

′
i, a−i);

and (iii) Vi(a) = Vi(a
′
i, a−i). Accordingly, xi(a) > Vi(a) if

and only if xi(a) = zi(a). Consequently, xi(a) > Vi(a) if and
only if xi(a′i, a−i) > Vi(a

′
i, a−i) which completes the proof.

2
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We will now prove that an equilibrium exists and the price
of stability is 1. In particular, we will show that the optimal
allocation aopt is in fact an equilibrium.

Lemma 5.2: Consider any single-selection maximum cover-
age game with a state-based distribution rule f sb. The optimal
allocation aopt is an equilibrium.

Proof of Lemma 5.2 Let aopt be an optimal allocation.
We begin by showing that Vi(a

opt) ≥ xi(a
opt) for all

i ∈ N . Suppose this was not the case, and there exists
an agent i such that Vi(a

opt) < xi(a
opt). This implies

that there exists a resource r ∈ Qi(a
opt) \ aopt such that

vr > vr̃ = maxr0∈Ai:|aopt
−i |=0 vr0 . By definition of Qi(a)

and Ni(a) there exists a sequence of players {i0, i1, . . . , im}
such that aopt

ik
∈ Aik−1

for all k ≥ 1, and r ∈ Aim .
Hence, consider a new allocation where aik = aopt

ik+1
for all

k ∈ {0, . . . ,m−1} and aim = r, where aj = aopt
j for all other

agents j /∈ {i0, i1, . . . , im}. The welfare of this allocation is
W (a) ≥W (aopt)+vr−vr̃ > W (aopt), which contradicts the
optimality of aopt. This means that every agent will be using
the marginal cost distribution rule to evaluate its utility in the
allocation aopt. Now, suppose aopt is not an equilibrium for
sake of contradiction. This means, that there exists an agent
i with an action ai ∈ A such that Ui(ai, a

opt
−i ) > Ui(a

opt).
Since agents are using the marginal contribution distribution
rule, which follows from Vi(a

opt) ≥ xi(aopt), we have

W (ai, a
opt
−i ) = W (aopt)−Ui(aopt)+Ui(ai, a

opt
−i ) > W (aopt),

which contradicts the optimality of aopt. This completes the
proof. 2

2) Informal Discussion of PoA Result: In the following
we give an informal discussion for the price of anarchy result.
This will be followed by a formal proof.

Consider a game G = (N,R, {Ai}, {fi}, {vr}). Let ane

be any equilibrium of the game G. A crucial part of the
forthcoming analysis will center on a new game G′ derived
from the original game G and the equilibrium ane, i.e.,

(G, ane) −→ G′.

This new game G′ possesses the identical player set, resource
set, and valuations of the resources as the game G. The
difference between the games are (i) the action sets and (ii)
the new game G′ employs the Gairing distribution rule, f?,
as opposed to the state-based distribution rule f sb. Informally,
the proof proceeds in the following two steps:

– Step 1: We prove that the equilibrium ane of G is also
an equilibrium of G′. Since the player set, resource set, and
valuations of the resources are unchanged we have that

W (ane;G′) = W (ane;G),

where we write the notation W (ane;G′) to mean the welfare
accrued at the allocation ane in the game G′.

– Step 2: We show that the optimal allocation aopt′ in the
new game G′ is at least as good as the optimal allocation in
the original game G′, i.e.,

W (aopt′ ;G′) ≥W (aopt;G).

Combining the results from Step 1 and Step 2 give us

W (ane;G)

W (aopt;G)
≥ W (ane;G′)

W (aopt′ ;G′)
≥ PoA(Gf?),

where the last inequality follows from Lemma 3.1 since G′

employs f?.
3) Proof of PoA Result: In this section we present the

formal proof for the price of anarchy result pertaining to the
state based design. We begin by providing the formal details
on the game construction highlighted above.

Construction of game G′: We will now provide the con-
struction of the new game G′ from the game G and the
equilibrium ane. We begin with some notation that we will
use to construct the new agents’ action sets in the game G′.
For each i ∈ N , let ri = ane

i and define

Hi = {r ∈ Ai : vrif
?(|ane|ri) < vrf

?(1 + |ane
−i|r)}, (32)

to be the set of resources that will give a strictly better payoff
to agent i if the agent was to use f? instead of f sb. Further,
denote

I = {i ∈ N : Hi 6= ∅}, (33)

as the set of agents that would move from the equilibrium
ane if they were to use f? instead of f sb. Finally, for each
agent i ∈ I, let

Bi = {r′ ∈ Qi(ane) : |ane|r′ = 0} , (34)

i.e. the enlarged set of resources of (26) that are not chosen
by anyone at equilibrium.

We are now ready to construct the new game G′. As noted
above, the agent set, resource set, and resource valuations are
identical to those in G. The new action set of each agent i in
game G′ is defined as

A′i =

{
(Ai\Hi) ∪Bi ∪ ∅ if i ∈ I ,
Ai otherwise .

Lastly, the utility functions of the agents are derived us-
ing f?. We denote this game G′ by the tuple G′ =
(N,R, {A′i}, f?, {vr}).

Formal Proof of Step 1: In the first part of the proof, we
will establish that the equilibrium allocation ane of game G
is also an equilibrium allocation of game G′. By definition of
the action sets {A′i}, we know that ane

i ∈ A′i for all agents
i ∈ N . It remains to show that for any agent i ∈ N

Ui(a
ne
i , a

ne
−i;G

′) ≥ Ui(a′i, ane
−i;G

′), ∀a′i ∈ A′i, (35)

where we use the notation Ui(a;G′) to denote the utility of
agent i for allocation a in the game G′.

Based on the above definition of the action sets {A′i},
we only need to concentrate our attention on agents i ∈ I
with choices a′i ∈ Bi, as (35) follows immediately in the
other cases. Since ane is an equilibrium of game G, then by
Lemma 5.1 we know that each agent i ∈ I employs the
marginal contribution distribution rule everywhere. Accord-
ingly, we have

Ui(a
ne
i , a

ne
−i;G) = max

r∈Ai\ane−i

vr = Vi(a
ne) ≥ xi(ane), (36)

where the first equality follows from the equilibrium con-
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ditions coupled with the use of the marginal contribution
distribution rule and the inequality follows from the use of
the marginal contribution distribution rule and (29).

We will conclude the proof by a case study on the potential
values of Ui(a

ne
i , a

ne
−i;G). For brevity in the forthcoming

arguments we let r = ane
i .

– Case (i): Suppose Ui(a
ne
i , a

ne
−i;G) = 0. In this case, we

have that xi(ane) = 0 from (36) which implies that any
resource r′ ∈ Bi has value vr′ = 0. Hence, Ui(ane

i , a
ne
−i;G

′) =
Ui(r

′, ane
−i;G

′) = 0 and we are done.

– Case (ii): Suppose Ui(a
ne
i , a

ne
−i;G) > 0. Based on the

definition of the marginal cost distribution rule, this implies
that |ane|r = 1, and hence

Ui(a
ne;G) = vrf

mc(|ane|r) = vrf
?(|ane|r) = Ui(a

ne;G′),

which follows from the fact that fmc(1) = f?(1) = 1. Hence,
Ui(a

ne;G′) = vr. For any r′ ∈ Bi, we have

Ui(r
′, ane

i ;G′) = vr′f
?(1 + |ane

−i|r′) = vr′ ≤ xi(ane),

where the last inequality follows for the definition of xi(ane).
Combining with (36) gives us

Ui(a
ne
i , a

ne
−i;G

′) ≥ Ui(r′, ane
−i;G

′),

which completes the proof. 2

Formal Proof of Step 2: We begin with a lemma that
highlights a structure associated with the action sets {A′i} in
the new constructed game G′.

Lemma 5.3: If r ∈ A′i \ Ai for some agent i ∈ N and
resource r ∈ R, then there exists an agent j 6= i such that
ane
j = r and consequently r ∈ A′j .

Proof of Lemma 5.3 Suppose r ∈ A′i \ Ai for some agent
i ∈ N and resource r ∈ R. Then, r ∈ Hi by definition of the
set A′i. By Lemma 5.1, each agent must either be a marginal
contribution agent, i.e., uses fmc at all resources, or a Gairing
agent, i.e., uses f? at all resources. Since, i ∈ I and ane is
an equilibrium, agent i must be a marginal contribution agent,
i.e.,

Ui(a
ne
i = r̃, ane

−i) = vr̃ · fmc(|ane|r̃) ≥ vr · fmc(|ane
−i|r + 1),

where the inequality follows from the equilibrium conditions.
Suppose by contradiction that |ane

−i|r = 0. In this case we have

vr · fmc(|ane
−i|r + 1) = vr · f?(|ane

−i|r + 1).

which follows from the fact that fmc(1) = f?(1) = 1. Since
f?(k) ≥ fmc(k) for all k ≥ 1, this implies

vr̃ · f?(|ane|r̃) ≥ vr̃ · fmc(|ane|r̃) ≥ vr · f?(|ane
−i|r + 1).

Hence, r /∈ Hi leading to the contradiction. This completes
the proof. 2

We exploit the result of Lemma 5.3 to prove Step 2. Towards
this goal, we construct an allocation a ∈ A′ that satisfies
W (a;G′) = W (aopt;G) where aopt ∈ arg maxa∈AW (a;G).
We begin with an initial allocation a where for each agent
i ∈ N

a =

{
aopt
i if aopt

i ∈ A′i ,
∅ else ,

That is, we assign each agent the agent’s optimal allocation
choice if it is available to them in the new action set A′i.
If all agents received their optimal choice, then the proof is
complete.

If this is not the case, then there will be a set of uncovered
resources U(a) = {r ∈ aopt : |a|r = 0} which we
denote by U(a) = {r1, . . . , rm}. We will now argue that we
can construct a new allocation a′ that covers one additional
resource from the set U(a), i.e., |U(a′)| = |U(a)| − 1 and
a ⊆ a′, where we denote with |U(a)| the cardinality of U(a).

To that end, consider any uncovered resource r0 ∈ U(a).
By definition, there exists an agent i0 ∈ N such that aopt

i0
= r0

but r0 /∈ A′i0 . Consequently, we have that r0 ∈ Hi0 and by
Lemma 5.3 we know that there exists an agent i1 6= i0 such
that ane

i1
= r0. Since ane

i1
= r0 we also have that r0 ∈ A′i1 by

definition. We now analyze the following three cases:

– Case 1: Suppose ai1 = ∅. Then define a new allocation
a′i1 = r0 and a′j = aj for all j 6= i1, and we are done.

– Case 2: Suppose ai1 = r1 and |ane|r1 = 0, meaning that
there are no agents at the resource r1 in the equilibrium
allocation. Then by definition r1 ∈ Bi0 and r1 ∈ A′i0 . Define
the allocation a′i0 = r1, a′i1 = r0, and a′j = aj for all j 6= i0, i1
and we are done.

– Case 3: Suppose ai1 = r1 and |ane|r1 > 0, meaning that
there are agents at the resource r1 in the equilibrium allocation.
Select any agent i2 such that ane

i2
= r1.

(i) If ai2 = ∅, then consider the allocation a′i1 = r0, a′i2 = r1

and a′j = aj for all j 6= i1, i2 and we are done.
(ii) Otherwise, if ai2 = r2, then let a′i1 = r0, a′i2 = r1, and

repeat Case 2 or Case 3 depending on whether |ane|r2 = 0
or |ane|r2 > 0. Note that Case 3-(ii) can be repeated at
most n iterations until an alternative case that terminates
is reached. To see this, note that each time an agent is
given a new choice in this process, i.e., ai → a′i 6= ai,
the agent’s new choice is the agent’s equilibrium choice,
i.e., a′i = ane

i . Therefore, once an agent is assigned a new
choice, the agent will never be reassigned in this process.

Starting from a as defined above, the above process results
in a new allocation a′ that satisfies |U(a′)| = |U(a)| − 1
and a ⊆ a′. As with the allocation a, the allocation a′

satisfies maxr |a′|r = 1 and a′ ⊆ aopt. If a′ = aopt, we are
done. Otherwise, we can repeat the process depicted above to
generate a new allocation a′′ such that |U(a′′)| = |U(a′)|−1 as
nowhere in the process did we rely on the fact that ai = aopt

i .
Repeating these arguments recursively provides the result. 2

VI. CONCLUSIONS

How should a system operator design a networked ar-
chitecture? The answer to this question is non-trivial and
involves weighing the advantages and disadvantages associated
with different design choices. In this paper we highlight
one novel trade-off pertaining to the worst-case and best-
case performance guarantees in distributed maximum coverage
problems with local information. Further, we demonstrate
how a system designer can move beyond these trade-offs by
equipping the agents with additional information about the
system. Fully realizing the potential of multiagent systems
requires the pursuit of a more formal understanding of the
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inherent limitations and performance trade-offs associated with
networked architectures. While this paper focused purely on
two performance measures, other metrics of interest include
convergence rates, robustness to adversaries, and fairness. In
each of these settings, it is imperative that a system operator
fully understands the role of information within these trade-
offs. Only then, will a system operator be able to effectively
balance the potential performance gains with the communica-
tion costs associated with propagating additional information
through the system.

VII. APPENDIX

A. Proof of Theorem 3.1

This section is dedicated to the proof of Theorem 3.1. We
will prove the result on the price of stability through a series
of intermediate lemmas. We begin by observing that any game
G in the class Gnf is a congestion game, and thus is a potential
game as introduced in [28], with a potential function φ : A →
R of the form6

φ(a) =
∑
r∈R

|a|r∑
j=1

vrf(j). (37)

Further recall that an equilibrium is guaranteed to exist in
any potential game [28], and one such equilibrium is the
allocation that maximizes the potential function φ, i.e., ane ∈
arg maxa∈A φ(a).

To prove (12), we restrict our attention to the set of single-
selection covering games, where the optimal allocation is
disjoint, i.e., aopt

i 6= aopt
j , for any i 6= j. We denote such

games by the set Ḡnf ⊂ Gnf . Our first lemma, stated without
proof for brevity, demonstrates that restricting attention to
single-selection covering games where the optimal allocation
is disjoint is sufficient for characterizing the price of stability
in single-selection covering games.

Lemma 7.1: Let Ḡnf denote the set of n-agent single-
selection maximum coverage games with distribution rule
f ∈ F . It holds PoS(Ḡnf ) = PoS(Gnf ).

We will now proceed with a series of claims to demonstrate
that PoS(Ḡnf ) satisfies (12) with equality. The central part
of the proof involves focusing on the equilibrium which
maximizes the potential function in (37) in the considered
class of games Ḡnf . From this specific equilibrium, we consider
a sequence of allocations taking the form a0 = ane and
ak = (aopt

i(k), a
k−1
−i(k)) for all k ∈ {1, . . . ,m} where i(k) is the

deviating player in the k-th profile. That is, any two adjacent
allocations ak−1 and ak differ by at most one agent’s choice,
namely agent i(k) that switches from ane

i(k) to aopt
i(k). In the case

that ane
i(k) = aopt

i(k), the allocations are the same, i.e., ak = ak+1.
The selection of the deviating players I = {i(1), . . . , i(m)}
is chosen according to the following rules:

(i) Let i(1) ∈ N be any arbitrary player.
(ii) For each k ≥ 1, if aopt

i(k) = ane
i(1) or aopt

i(k) /∈ a
ne then the

sequence is terminated.
(iii) Otherwise, let i(k+ 1) be any agent in the set {j ∈ N :

akj = aopt
i(k)} and repeat.

6A proof of this can be found in [28], where the potential function φ is
also defined.

The sequence of allocations defined above is merely em-
ployed as a convenient mathematical formulation to derive a
relationship between W (ane) and W (aopt). The first part of
this derivation is provided in the following lemma.

Lemma 7.2: Define Q = ∪i∈I ane
i and Q̄ = ∪i∈I aopt

i .
Then ∑

i∈I
Ui(a

ne) ≥
∑

r∈Q∩Q̄

vrf(|ane|r) +
∑

r∈Q̄\Q

vr. (38)

Proof of Lemma 7.2 We begin with two observations on the
above sequence of allocations: (a) the sequence of allocations
can continue at most n steps due to the disjointness of aopt and
(b) if the sequence continues, it must be that ane

i(k+1) = aopt
i(k).

Observation (b) ensures us that

ψ =

m−1∑
k=1

Ui(k+1)(a
k)− Ui(k)(a

k) = 0. (39)

Accordingly, we have that

φ(a0)− φ(am) =

m−1∑
k=0

φ(ak)− φ(ak+1)

=

m−1∑
k=0

Ui(k+1)(a
k)− Ui(k+1)(a

k+1)

= Ui(1)(a
0)− Ui(m)(a

m) + ψ

= Ui(1)(a
0)− Ui(m)(a

m) ≥ 0 .

The first and third equalities follow by rearranging the terms.
The second equality can be shown using the definition of φ
as in (37); the last equality follows by (39). The inequality
derives from the fact that a0 = ane optimizes the potential
function. Thanks to observation (b), one can show that

Q \ Q̄ = ane
i(1) \ a

opt
i(m) and Q̄ \Q = aopt

i(m) \ a
ne
i(1) .

If Q\Q̄ 6= ∅, it must be that ane
i(1) 6= aopt

i(m) so that Q\Q̄ = ane
i(1)

and Q̄\Q = aopt
i(m) . Using ane

i(1) 6= aopt
i(m) in condition (ii), tells

us that aopt
i(m) /∈ a

ne and thus the resource aopt
i(m) is not chosen

by anyone else in the allocation am. Thus, when Q \ Q̄ 6= ∅,

Ui(1)(a
0)− Ui(m)(a

m) =
∑

r∈Q\Q̄

vrf(|ane|r)−
∑

r∈Q̄\Q

vr ≥ 0.

(40)
When Q \ Q̄ = ∅, also Q̄ \ Q = ∅ and thus the previ-
ous inequality still holds. Rearranging the terms and adding∑
r∈Q∩Q̄ vrf(|ane|r) to each side gives us∑
r∈Q

vrf(|ane|r) ≥
∑

r∈Q∩Q̄

vrf(|ane|r) +
∑

r∈Q̄\Q

vr . (41)

Finally note that∑
i∈I

Ui(a
ne) ≥

∑
r∈Q

vrf(|ane|r)

which together with (41) completes the proof. 2

Our next lemma shows that there exists a collection of
disjoint sequences that covers all players in N . We will express
a sequence merely by the deviating player set I with the
understanding that this set uniquely determines the sequence
of allocations.
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Lemma 7.3: There exists a collection of deviating players
I1, . . . , Ip chosen according to the process described above
such that ∪k Ik = N and Ij ∩ Ik = ∅ for any j 6= k.

Proof of Lemma 7.3 Suppose I1, I2, . . . , Ik represent the
first k sequences of deviating players. Further assume that they
are all disjoint. Choose some player i ∈ N \∪kIk to start the
(k + 1)-th sequence. If no such player exists, we are done.
Otherwise, construct the sequence according to the process
depicted above. If the sequence terminates without selecting
a player in ∪kIk, then repeat this process to generate the
(k + 2)-th sequence. Otherwise, let ik+1(j), j ≥ 2, denote
the first player in the (k + 1)-th sequence contained in the
set ∪kIk. Since aopt

i 6= aopt
j (for i 6= j), this player must be

the first player in a previous sequence. Suppose this player is
i`(1), where ` ∈ {1, . . . , k}. If this is the case, replace the
`-th sequence with {ik+1(1), . . . , ik+1(j − 1), I`} which is a
valid sequence and disjoint from the others. Then repeat the
process above to choose the (k+1)-th sequence. Note that this
process can continue at most n-steps and will always result in
a collection of disjoint sequences that cover all players in N .
This completes the proof. 2

In the following we complete the proof of Theorem 3.1, by
means of Lemmas 7.2 and 7.3.

Proof of Theorem 3.1: We being showing a lower bound
on the price of stability. Let I1, . . . , Ip denote a collection
of deviating players that satisfies Lemma 7.3. Further, let Qk

and Q̄k be defined as above for each sequence k = 1, . . . , p.
Using the result (38) from Lemma 7.2, we have∑
i∈N

Ui(a
ne) =

p∑
k=1

∑
i∈Ik

Ui(a
ne)

≥
p∑
k=1

 ∑
r∈Qk∩Q̄k

vrf(|ane|r) +
∑

r∈Q̄k\Qk

vr


=

∑
r∈aopt∩ane

vrf(|ane|r) +
∑

r∈aopt\ane
vr,

where the above equality follows from the fact that Q̄i∩Q̄j =
∅ for any i 6= j which is due to the disjointness of aopt. Using
the definition of Ui(ane), we have∑
r∈ane\aopt

vr|ane|rf(|ane|r)+
∑

r∈ane∩aopt

vr (|ane|r − 1) f(|ane|r) ≥
∑

r∈aopt\ane
vr.

Define γ = maxj≤n(j − 1)f(j). Working with the above
expression we have∑

r∈ane\aopt

vr(γ + 1) +
∑

r∈ane∩aopt

vrγ ≥
∑

r∈aopt\ane
vr,

which gives us that

(γ + 1)W (ane) ≥W (aopt)

which completes the lower bound.
We will now provide an accompanying upper bound on

the price of stability. To that end, consider a family of
examples parameterized by a coefficient j ∈ {1, . . . , n}. For
each j, the game consists of j agents and (j + 1)-resources
R = {r0, r1, . . . , rj} where the values of the resources are
vr0 = 1 and vr1 = · · · = vrj = f(j) − ε where ε > 0 is an
arbitrarily small constant, and the action set of each agent

i ∈ {1, . . . , j} is Ai = {r0, ri}. The unique equilibrium is of
the form ane = (r0, . . . , r0) as every agent selects resource r0

and the total welfare is W (ane) = 1. The optimal allocation
is of the form aopt = (r0, r2, . . . , rj) which generates a total
welfare of W (aopt) = 1 + (j − 1)(f(j) − ε). Performing
a worst case analysis over ε and j gives (12). The claim
in (13) follows from observing that fmc is always optimal,
and returns a price of stability of 1, thanks to Corollary 3.2. 2
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