
Dynamic Programming Lecture #1

Outline:

• Problem formulation(s)

• Principle of optimality

• Issues and variations



Motivation: Staged Optimization

• Q: How to formulate optimization for problems that occur in “stages”?

• “Standard” Optimization:
min
θ∈Θ

J(θ)

– Cost function: J(θ) = J(θ1, . . . , θn)

– Variables: (θ1, . . . , θn) = θ

– Constraints: θ ∈ Θ

• Examples: Best fit of experimental data, variation of design parameters, etc.

• Example: Shortest Path
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N nodes

– Setup: Hop from one node to next

– Define: `kij
def= distance from node i to j at stage k

– Objective: Minimize
K−1∑
k=0

`kij

– Tradeoff: Immediate distance versus future distances



Nondeterministic Path Evolution

Stage k Stage k+1

.

.

.

.

.

.

• Setup: Hop from one node to next, but

actual destination = desired destination +1, +0, -1

i.e., uncertain evolution

• Consequences

– Cost function
∑K−1
k=0 `

k
ij not fully specified

– Must specify “contingency” rules

– Must model nondeterminism



Example: Inventory Control

• Inventory model:

x+ = x+ u−D

tomorrow’s inventory = today’s inventory + production - demand

c_posc_neg

• Cost:

N∑
k=0

cposxpos + cnegxneg

– x > 0⇒ storage cost

– x < 0⇒ backlog cost

• Demand d ∈ {0, dlow, dhigh}

• Decisions:

– How much to produce?

– How to model demand?



Modeling Nondeterminism

• Let π denote a “policy”, i.e., a set of contingency rules

• Let w denote nondeterministic elements

• Overall cost is a function of both:
J(π,w)

• How to model w?

– Random:
min
π

Ew [J(π,w)]

– Worst case:
min
π

max
w

J(π,w)

– Risk sensitive: 0 < α <∞
min
π

Ew

[
eαJ(π,w)

]
– Game theoretic: w penalized according to G(π,w) (is G(·) known?)

• Examples

– Series of coin tosses: {T, T, T,H, T,H, T, T, ...}
– Payoff: 2first occurrence of H

– “Expected” payoff with fair coin:

(1/2) · 2 + (1/4) · 22 + (1/8) · 23 + ... =∞

– Risk sensitive reward with fair coin: log(payoff) (discounts large rewards)

(1/2) log(2) + (1/4) log(22) + (1/8) log(23) + ... <∞

– Worst case payoff = 1

– Game theoretic payoff?

• How to model w in inventory control?



Example: Asset Management

• Have property...get buy offer: wk

• Do we sell? hold?

• Costs:

– If we hold, we must pay to keep on market

– If we hold until end, we must accept final offer

– If we sell, we may miss future offers

• Model of offers: wk ∈ {wlow, wmid, whigh} with probabilities.

• Similar to “parking lot” dilemma



Example: Hypothesis Testing

• Gambling game involving opponent with dice.

• Two possibilities:

1. Rolling fair dice

2. Rolling crooked dice

• Q: Is opponent cheating?

• Costs:

– If we make correct conclusion, we are rewarded

– If we make incorrect conclusion, we are penalized

– If we continue to play, we are penalized

• Common theme: Distinction from “standard” optimization

– Staged evolution

– Uncertain evolution



Principle of Optimality

Original Problem Optimal Path

Subproblem Optimal Path?

• Optimal course for subproblem = tail of optimal original problem

• Why? If not, then original course can be improved

• Utility: Reduction in computations

• Introduce “terminal node” t

• Define Jk(i) = minimum distance from node i to t starting at stage k

• Clearly
JN(1) = `N1t

JN(2) = `N2t

JN(3) = `N3t

(no choice)



Principle of Optimality, cont (2)

• How to compute JN−1(1)? Compare...

– `N−1
11 + JN(1)

– `N−1
12 + JN(2)

– `N−1
13 + JN(3)

• JN−1(1) is smallest of 3 choices

• How to compute JN−2(1)?

t

NN - 1N - 2

• Total # of paths = 9...but only need to check 3!

– `N−2
11 + JN−1(1)

– `N−2
12 + JN−1(2)

– `N−3
13 + JN−1(3)



Principle of Optimality, cont (3)

• Can proceed backward to compute JN−3(i), . . . , J1(i)

• Minimum total cost from start node s? Compare...

– `s1 + J1(1)

– `s2 + J1(2)

– `s3 + J1(3)

• Compare: N stages & m nodes = mN # paths

• Using DP: # comparisons-per-stage = m2 ⇒ Nm2 total comparisons

• Principle of optimality disqualifies all but optimal “tails”



Issues & Variations

• Generalization: Main idea is “simply” principle of optimality

• Key question: How to represent different optimization to fit DP framework.

• Random element: Presence of stochastic/random behaviors in evolution of stages must
be modeled.

• Information: What is optimal policy given limited information about current situation?

• Horizon: What if there is no clear “termination” stage?

∞∑
k=0

e−αkh(xk) vs lim
N→∞

1

N

N−1∑
k=0

h(xk)

• Curse of dimensionality: Dynamic programming reduces search...but still can be huge.


