
Dynamic Programming Lecture #2

Outline:

• Deterministic DP

• Illustrations

• Extensions



Deterministic DP Framework

• System:
xk+1 = fk(xk, uk)

– State: xk ∈ Sk

– Control (decision): uk ∈ Uk(xk)

• Objective:

J∗(x0) = min g0(x0, u0) + . . . + gN−1(xN−1, uN−1) + gN(xN)

= min gN(xN) +
N−1∑
k=0

gk(xk, uk)

– gk(xk, uk)
def= stage cost

– gN(xN) def= terminal cost

– [0, . . . , N ] def= (finite) horizon

• Issue: Minimize over what?

– Open-loop viewpoint: Given x0, produce {u∗0, . . . , u∗N−1}.
– Feedback viewpoint: Produce {µ∗0, . . . , µ∗N−1} and implement

uk = µk(xk), where µk : Sk → Uk(xk)

– In case of no uncertainty (randomness, disturbances, etc), two are same.



Deterministic DP Framework, cont (2)

• Example:

xk+1 =
1

2
xk + uk, x0 = 1

– Compare:
u0 = 1/2, u1 = 1/2, . . . , uN−1 = 1/2

uk = µk(xk) = (1/2)xk

– Both lead to x1, . . . , xN = 1 if x0 = 1

– Different trajectories if x0 6= 1, eg

{2, 3/2, 5/4, 9/8, 17/16, . . .} vs {2, 2, 2, . . .}

• We will use policies in anticipation of future discussion.

• Principle of optimality:

– Full problem:
xk+1 = fk(xk, uk)

min
µ0,...,µN−1

gN(xN) +
N−1∑
k=0

gk(xk, µk(xk))

where µk : Sk → Uk(xk)

– Partial problem:

min
µk,...,µN−1

gN(xN) +
N−1∑
k̃=k

gk̃(xk̃, µk̃(xk̃))

– If {µ∗0, . . . , µ∗N−1} is optimal for full problem, then the “tail” {µ∗k, . . . , µ∗N−1} must
be optimal for for partial problem.



DP Algorithm

• Theorem: Define
JN(xN) = gN(xN)

Jk(xk) = min
uk∈Uk(xk)

gk(xk, uk) + Jk+1(fk(xk, uk))

Then

– J∗(x0) = J0(x0)

– µ∗k(xk) = arg minuk∈Uk(xk) gk(xk, uk) + Jk+1(fk(xk, uk))

• Comments:

– Algorithm produces optimal cost and policies.

– One multistage problem converted into several 1-stage problem.

– Associate Jk(xk) as “optimal cost-to-go” starting from xk, i.e., partial solution:

Jk(xk) = min
µk,...,µN−1

gN(xN) +
N−1∑
k̃=k

gk̃(xk̃, µk̃(xk̃))

• Proof:

– Assume Jk+1 is optimal cost-to-go, i.e., solution to subproblem.

– JN(xN) = gN(xN) is indeed optimal cost-to-go.

min
µk,...,µN−1

gN(xN) +
N−1∑
k̃=k

gk̃(xk̃, µk̃(xk̃))

= min
µk

gk(xk, µk(xk)) + min
µk+1,...,µN−1

gN(xN) +
N−1∑

k̃=k+1

gk̃(xk̃, µk̃(xk̃))




= min
µk

gk(xk, µk(xk)) + Jk+1(xk+1)

= min
uk∈Uk(xk)

gk(xk, uk) + Jk+1(f(xk, uk))

def= Jk(xk)



Formulation Examples

• Shortest path:
xk+1 = uk

gk(xk, uk) = `k
xkuk

gN(xN) = 0

– Uk(xk) defines connectivity

– Or can set `k
xkuk

= ∞ for illegal jumps

• Can exploit shortest path algorithms (tailored DP).

• Example: Matrix multiplication (problem 1.16).

– Cost to multiply A×B: # rows(A)× # cols(A)× # cols(B)

– Consider

M1M2M3 = (1× 10)(10× 1)(1× 10)
= ( M1M2 ) M3 = 20 multiplications
= M1 ( M2M3 ) = 200 multiplications

– What is optimal sequence to multiply M = M1M2 . . . MN?

– Two formulations:

1. Split products allowed:
M = (M1M2)(M3M4)

2. Split products not allowed:

M = M1((M2M3)M4)



Matrix Example

2-strings 3-strings

N-1 strings

.

.

.

Start End

.

.

.

. . .

• Split products not allowed...what is state?

– 2-strings: {(M1M2), (M2M3), . . .}
– 3-strings: {(M1M2M3), (M2M3M4), . . .}
– N − 1-strings: {(M1 . . . MN−1), (M2 . . . MN)}
– Can define cost of node jump.

– Not all nodes connected.

• Split products allowed...what is state?



Traveling Salesman

• Given N cities, minimize total distance to visit each city once starting from S and ending
at S.

2-strings 3-strings

.

.

.

S End

.

.

.

. . .

N-strings

.

.

.

• What is state?

• Example: {S, A,B,C, D}

– 2-strings: {SA, SB, SC, SD}
– 3-strings: {SAB, SAC, SAD, SBA, SBC, SBD, . . .}
– N -strings: {SABC, SABD, SACB, SACD, SBAC, . . .}

• N ! different paths



Variations

• Multiplicative positive cost:

J = g0(x0, µ0(x0))× . . .× gN(xN)

– Since log(·) is monotonic, equivalent cost:

J̃ = log(g0(x0, µ0(x0))× . . .× gN(xN))
= log(g0(x0, µ0(x0)) + . . . + log(gN(xN))

= g̃N(xN) +
N−1∑
k=0

g̃(xk, µk(xk))

– Do not have principle of optimality for nonnegative multiplicative costs!

• History dependent controls: Today’s decision constrained by yesterday’s decision.

– What is state?

xaug
k+1 =

(
xk+1

vk+1

)
=

(
fk(xk, uk)

uk

)

– Constraint uk ∈ U(xaug
k ) = U(xk, vk) = U(xk, uk−1)

– Can similarly augment history dependent (random) disturbances.



Variations, cont (2)

• Terminating processes:

– Play until end:

J = gN(xN) +
N−1∑
k=0

gk(xk, µk(xk))

or terminate early:

J = T +
k∗∑

k=0
gk(xk, µk(xk))

– Augment state space: xT & uT

– New state dynamics:

xk+1 = f̃k(xk, uk)

=

{
fk(xk, uk) xk 6= xT and uk 6= uT ;
xT xk = xT or uk = uT

– New stage cost:

g̃k(xk, uk) =


gk(xk, uk) xk 6= xT and uk 6= uT ;
T xk 6= xT and uk = uT ;
0 xk = xT

– New terminal cost:

g̃N(xN) =

{
gN(xN) xN 6= xT ;
0 xN = xT


