Dynamic Programming Lecture \#3

Outline:

- Probability Review
- Probability space
- Conditional probability
- Total probability
- Bayes rule
- Independent events
- Conditional independence
- Mutual independence

Probability Space

- Sample Space: A set Ω
- Event: A subset of Ω
- To "any " subset of $A \subset \Omega$, we denote

$$
\mathrm{P}[A]=\text { the probabilty of } A
$$

- Axioms:

1. $\mathrm{P}[A] \geq 0$
2. $\mathrm{P}[\Omega]=1$
3. For disjoint sets $A_{1}, A_{2}, A_{3}, \ldots$

$$
\mathrm{P}\left[A_{1} \cup A_{2} \cup A_{3} \cup \ldots\right]=\mathrm{P}\left[A_{1}\right]+\mathrm{P}\left[A_{2}\right]+\mathrm{P}\left[A_{3}\right]+\ldots
$$

- We will restrict our attention to "countable" probability spaces:

$$
\begin{gathered}
\Omega=\left\{\omega_{1}, \omega_{2}, \omega_{3}, \ldots\right\} \\
\mathrm{P}\left[\omega_{i}\right]=p_{i} \\
\mathrm{P}[A]=\sum_{\omega_{i} \in A} p_{i}
\end{gathered}
$$

Example: Pair of Dice

$$
\Omega=\{(i, j): 1 \leq i \leq 6 \quad \& \quad 1 \leq j \leq 6\}
$$

- Visualization:

$i \backslash j$	1	2	3	4	5	6
1	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot
2	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot
3	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot
4	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot
5	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot
6	\cdot	\cdot	\cdot	\cdot	\cdot	.

- Set $\mathrm{P}[(i, j)]=p_{i j}$
- For "fair" dice, $p_{i j}=1 / 36$ for all "rolls", i.e., (i, j) pairs.
- To compute probabilities, must translate statements into events (i.e., subsets):
- Doubles: $p_{11}+\ldots+p_{66}$
- Larger die $=3: p_{13}+p_{23}+p_{33}+p_{32}+p_{31}$
- Sum of dice $=4: p_{13}+p_{22}+p_{31}$
- Same events regardless of $p_{i j}$ values-only resulting probabilities differ.

Conditional Probability

- Motivation: Compare probability of an event versus probability of the same event GIVEN additional information.
- Example:
- (Probability sum of dice ≥ 7)
- (Probability sum of dice ≥ 7) given (one of dice ≥ 5)
- Example: Probability car needs repair given engine light is on?
- Conditional Probability: Let A and B be events. Define "probability of A given $B^{\prime \prime}$:

$$
\mathrm{P}[A \mid B]=\frac{\mathrm{P}[A \cap B]}{\mathrm{P}[B]}
$$

- Note that $A \cap B$ is another event, interpreted as BOTh A and B.

- "given B " effectively redefines the sample space of events.
- Extreme examples: $A \subset B$? $B \subset A$? $A \cap B=\emptyset$?

Example: Dice

-What is probability (sum of dice ≤ 4) given (larger die $=3$)?

- Translate to events:
$-A:($ sum of dice $\leq 4)=\{(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)\}$

$i \backslash j$	1	2	3			
1	X	X	X			
2	X	X	.			
3	X					
4	.					
5	.					
6						

$-B:($ larger die $=3)=\{(1,3),(2,3),(3,3),(3,2),(3,1)\}$

$i \backslash j$	1	2	3	4	5	6
1	\cdot	\cdot	X	\cdot	\cdot	\cdot
2	\cdot	\cdot	X	\cdot	\cdot	\cdot
3	X	X	X	\cdot	\cdot	\cdot
4	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot
5	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot
6	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot

$-A \cap B=\{(1,3),(3,1)\}$

- Result:

$$
\mathrm{P}[A \mid B]=\frac{p_{13}+p_{31}}{p_{13}+p_{23}+p_{33}+p_{32}+p_{31}}
$$

- Neither the definition nor computation relies on "natural" probabilities of dice.

Total Probability

- Suppose A_{1} and A_{2} satisfy:
$-A_{1} \cap A_{2}=\emptyset$
$-A_{1} \cup A_{2}=\Omega$
i.e., A_{1} and A_{2} form a partition of Ω.
- For any event $B: B=\left(B \cap A_{1}\right) \cup\left(B \cap A_{2}\right)$
- From axioms:

$$
\mathrm{P}[B]=\mathrm{P}\left[B \bigcap A_{1}\right]+\mathrm{P}\left[B \bigcap A_{2}\right]
$$

- Using conditional probability:

$$
\mathrm{P}[B]=\mathrm{P}\left[B \mid A_{1}\right] \mathrm{P}\left[A_{1}\right]+\mathrm{P}\left[B \mid A_{2}\right] \mathrm{P}\left[A_{2}\right]
$$

- More generally, given a mutually exclusive A_{1}, \ldots, A_{N} partition of Ω :

$$
\mathrm{P}[B]=\mathrm{P}\left[B \mid A_{1}\right] \mathrm{P}\left[A_{1}\right]+\ldots+\mathrm{P}\left[B \mid A_{N}\right] \mathrm{P}\left[A_{N}\right]
$$

Bayes' Rule

- Recall Total Probability: Given a mutually exclusive A_{1}, \ldots, A_{N} partition of Ω :

$$
\mathrm{P}[B]=\mathrm{P}\left[B \mid A_{1}\right] \mathrm{P}\left[A_{1}\right]+\ldots+\mathrm{P}\left[B \mid A_{N}\right] \mathrm{P}\left[A_{N}\right]
$$

- For any A_{i} :

$$
\begin{aligned}
\mathrm{P}\left[A_{i} \mid B\right] & =\frac{\mathrm{P}\left[A_{i} \& B\right]}{\mathrm{P}[B]} \\
\mathrm{P}\left[B \mid A_{i}\right] & =\frac{\mathrm{P}\left[A_{i} \& B\right]}{\mathrm{P}\left[A_{i}\right]}
\end{aligned}
$$

same RHS numerator

$$
\begin{aligned}
& \Rightarrow \\
\mathrm{P}\left[A_{i} \mid B\right] \mathrm{P}[B] & =\mathrm{P}\left[B \mid A_{i}\right] \mathrm{P}\left[A_{i}\right]
\end{aligned}
$$

- Now rewrite, using total probability:

$$
\mathrm{P}\left[A_{i} \mid B\right]=\frac{\mathrm{P}\left[B \mid A_{i}\right] \mathrm{P}\left[A_{i}\right]}{\mathrm{P}\left[B \mid A_{1}\right] \mathrm{P}\left[A_{1}\right]+\ldots+\mathrm{P}\left[B \mid A_{N}\right] \mathrm{P}\left[A_{N}\right]}
$$

- Known as Bayes' rule
- Utility: Hypothesis revision
$-A_{i}$: hypotheses
- B: new data
$-\mathrm{P}\left[B \mid A_{i}\right]$: anticipated data given hypothesis
- $\mathrm{P}\left[A_{i}\right]$: before-data (prior) "belief/confidence"
- $\mathrm{P}\left[A_{i} \mid B\right]$: after-data (posterior) belief/confidence

Example: Cheater Detection

- Two coins:
- Coin 1: $\mathrm{P}[H]=p_{1}, \mathrm{P}[T]=\left(1-p_{1}\right)$
- Coin 2: $\mathrm{P}[H]=p_{2}, \mathrm{P}[T]=\left(1-p_{2}\right)$
- After seeing data, which coin is being used? Never know for sure, but can compute probabilities.
- Associate:
$-A_{1}$: using coin 1
$-A_{2}$: using coin 2
$-B$: observed data
- Suppose we see 2 flips of coin: $H H$
$-\mathrm{P}\left[H H \mid A_{1}\right]=p_{1}^{2}$
$-\mathrm{P}\left[H H \mid A_{2}\right]=p_{2}^{2}$
- Similar with other flips, $H T, T H, T T$.
- Now apply Bayes' rule:

$$
\mathrm{P}\left[A_{i} \mid B\right]=\frac{\mathrm{P}\left[B \mid A_{i}\right] \mathrm{P}\left[A_{i}\right]}{\mathrm{P}\left[B \mid A_{1}\right] \mathrm{P}\left[A_{1}\right]+\mathrm{P}\left[B \mid A_{2}\right] \mathrm{P}\left[A_{2}\right]}
$$

- Numerical example: $\mathrm{P}\left[A_{1}\right]=0.3, \mathrm{P}\left[A_{2}\right]=0.7, p_{1}=0.9, p_{2}=.5, B=H H$:

$$
\begin{aligned}
& \mathrm{P}\left[A_{1} \mid H H\right]=\frac{(0.9)^{2}(0.3)}{\left(0.9^{2}\right)(0.3)+(0.5)^{2}(0.7)}=0.58 \\
& \mathrm{P}\left[A_{2} \mid H H\right]=\frac{(0.5)^{2}(0.7)}{\left(0.9^{2}\right)(0.3)+(0.5)^{2}(0.7)}=0.42
\end{aligned}
$$

i.e., increased suspicion of cheating!

Independent Events

- Define: Events A and B are Independent if

$$
\mathrm{P}[A \bigcap B]=\mathrm{P}[A] \mathrm{P}[B]
$$

- In terms of conditional probability:

$$
\mathrm{P}[A \mid B]=\frac{\mathrm{P}[A \cap B]}{\mathrm{P}[B]}=\frac{\mathrm{P}[A] \mathrm{P}[B]}{\mathrm{P}[B]}=\mathrm{P}[A] \quad \text { (if independent!) }
$$

- Information of B does not affect probability of A.
- Example: Fair dice
- $A=$ doubles
$-B=$ sum of roll ≤ 3
$-\mathrm{P}[A \cap B]=1 / 36=\mathrm{P}[A] \mathrm{P}[B]=(1 / 6)(3 / 36)$? Not independent.
- Changing B to event (first die $=3$) results in independence.
- Independence depends on events $A \& B$ and underlying probabilities.

Conditional Independence

- Conditional independence: Given an event C, the events A and B are conditionally independent given C if

$$
\mathrm{P}[A \bigcap B \mid C]=\mathrm{P}[A \mid C] \mathrm{P}[B \mid C]
$$

- Rewrite:

$$
\begin{gathered}
\mathrm{P}[A \cap B \mid C]=\frac{\mathrm{P}[A \cap B \cap C]}{\mathrm{P}[C]}=\frac{\mathrm{P}[A \mid(B \cap C)] \mathrm{P}[B \cap C]}{\mathrm{P}[C]}=\mathrm{P}[A \mid(B \cap C)] \mathrm{P}[B \mid C] \\
\Rightarrow(\text { under conditional independence }) \\
\mathrm{P}[A \mid C]=\mathrm{P}[A \mid(B \cap C)]
\end{gathered}
$$

i.e., additional knowledge of B does not affect probability of A

- Conditioning may change independence.
- Example: Two coins. Probability of heads for each coin p_{A} and p_{B}
- Randomly choose coin (A, B) with probability $(q, 1-q)$
- Toss selected coin 2 times
- Events:

$$
\begin{gathered}
E_{1}=\text { heads on first toss } \\
E_{2}=\text { heads on second toss } \\
E_{0}=\text { choose coin } A
\end{gathered}
$$

- Question: Are E_{1} and E_{2} independent? No.

$$
\begin{gathered}
\mathrm{P}\left[E_{1} \& E_{2}\right]=\mathrm{P}\left[E_{1}\right] \mathrm{P}\left[E_{2}\right] ? \\
\mathrm{P}\left[E_{1} \& E_{2} \mid E_{0}\right] \mathrm{P}\left[E_{0}\right]+\mathrm{P}\left[E_{1} \& E_{2} \mid E_{0}^{c}\right] \mathrm{P}\left[E_{0}^{c}\right] \\
=p_{A}^{2} q+p_{B}^{2}(1-q) \\
=\left(p_{A} q+p_{B}(1-q)\right)\left(p_{A} q+p_{B}(1-q)\right) ?
\end{gathered}
$$

- Are E_{1} and E_{2} conditionally independent on E_{0} ? Yes.

$$
\mathrm{P}\left[E_{1} \& E_{2} \mid E_{0}\right]=p_{A}^{2}=\mathrm{P}\left[E_{1} \mid E_{0}\right] \mathrm{P}\left[E_{2} \mid E_{0}\right]
$$

Mutual Independence

- Mutual independence: A set of events A_{1}, \ldots, A_{N} are mutually independent if for any sub-collection, S

$$
\mathrm{P}\left[\bigcap_{i \in S} A_{i}\right]=\Pi_{i \in S} \mathrm{P}\left[A_{i}\right]
$$

- Pairwise independence does not imply mutual independence.
- Example: 2 fair dice
$-A$: doubles; $B:$ first die $=6 ; C$: second die $=1$.

$i \backslash j$	1	2	3	4	5	6
1	(A, C)	\cdot	\cdot	\cdot	\cdot	\cdot
2	C	A	\cdot	\cdot	\cdot	\cdot
3	C	\cdot	A	\cdot	\cdot	\cdot
4	C	\cdot	\cdot	A	\cdot	\cdot
5	C	\cdot	\cdot	\cdot	A	\cdot
6	(B, C)	B	B	B	B	(A, B)

- $A \& B$ are independent, $A \& C$ are independent, $B \& C$ are independent.
$-\mathrm{P}[A \& B \& C]=0 \neq \mathrm{P}[A] \mathrm{P}[B] \mathrm{P}[C]$

