Outline:

- Probability Review
 - Probability space
 - Conditional probability
 - Total probability
 - Bayes rule
 - Independent events
 - Conditional independence
 - Mutual independence

- SAMPLE SPACE: A set Ω
- EVENT: A subset of Ω
- To "any " subset of $A \subset \Omega$, we denote

P[A] =the probability of A

- Axioms:
 - **1**. $P[A] \ge 0$
 - **2**. $P[\Omega] = 1$
 - 3. For disjoint sets A_1 , A_2 , A_3 , ...

$$P[A_1 \bigcup A_2 \bigcup A_3 \bigcup \ldots] = P[A_1] + P[A_2] + P[A_3] + \ldots$$

• We will restrict our attention to "countable" probability spaces:

$$\Omega = \{\omega_1, \omega_2, \omega_3, \ldots\}$$
$$P[\omega_i] = p_i$$
$$P[A] = \sum_{\omega_i \in A} p_i$$

```
\Omega = \{(i, j) : 1 \le i \le 6 \quad \& \quad 1 \le j \le 6\}
```

• Visualization:

$i \backslash j$	1	2	3	4	5	6
1	•	•	•	•	•	•
2	•	•	•	•	•	•
3	•	•	•	•	•	•
4	•	•	•	•	•	•
5	•	•	•	•	•	•
6	•	•	•	•	•	•

- Set $P[(i,j)] = p_{ij}$
- For "fair" dice, $p_{ij} = 1/36$ for all "rolls", i.e., (i,j) pairs.
- To compute probabilities, must translate statements into events (i.e., subsets):
 - Doubles: $p_{11} + \ldots + p_{66}$
 - Larger die = 3: $p_{13} + p_{23} + p_{33} + p_{32} + p_{31}$
 - Sum of dice = 4: $p_{13} + p_{22} + p_{31}$
- Same events regardless of p_{ij} values—only resulting probabilities differ.

- Motivation: Compare probability of an event versus probability of the same event GIVEN additional information.
- Example:
 - (Probability sum of dice \geq 7)
 - (Probability sum of dice \geq 7) given (one of dice \geq 5)
- Example: Probability car needs repair given engine light is on?
- CONDITIONAL PROBABILITY: Let A and B be events. Define "probability of A given B":

$$P[A|B] = \frac{P[A \cap B]}{P[B]}$$

• Note that $A \cap B$ is another event, interpreted as BOTH A AND B.

- "given B" effectively redefines the sample space of events.
- Extreme examples: $A \subset B$? $B \subset A$? $A \cap B = \emptyset$?

- What is probability (sum of dice ≤ 4) given (larger die = 3)?
- Translate to events:
 - $-A: (sum of dice \le 4) = \{(1,1), (1,2), (1,3), (2,1), (2,2), (3,1)\}$

$i \backslash j$	1	2	3	4	5	6
1	X	X	X	•	•	•
2	X	X	•	•	•	•
3	X	•	•	•	•	•
4	•	•	•	•	•	•
5	•	•	•	•	•	•
6	•	•	•	•	•	•

 $-B: (\text{larger die} = 3) = \{(1,3), (2,3), (3,3), (3,2), (3,1)\}$

$i \backslash j$	1	2	3	4	5	6
1	•	•	X	•	•	•
2	•	•	X	•	•	•
3	X	X	X	•	•	•
4	•	•	•	•	•	•
5	•	•	•	•	•	•
6	•	•	•	•	•	•

$$-A \cap B = \{(1,3), (3,1)\}$$

• Result:

$$P[A|B] = \frac{p_{13} + p_{31}}{p_{13} + p_{23} + p_{33} + p_{32} + p_{31}}$$

• Neither the definition nor computation relies on "natural" probabilities of dice.

- Suppose A_1 and A_2 satisfy:
 - $-A_1 \cap A_2 = \emptyset$ $-A_1 \cup A_2 = \Omega$
 - $11_1 \cup 11_2 = 11_2$
 - i.e., A_1 and A_2 form a partition of Ω .
- For any event $B: B = (B \cap A_1) \cup (B \cap A_2)$
- From axioms:

$$P[B] = P[B \cap A_1] + P[B \cap A_2]$$

• Using conditional probability:

$$P[B] = P[B|A_1] P[A_1] + P[B|A_2] P[A_2]$$

• More generally, given a mutually exclusive A_1, \ldots, A_N partition of Ω :

$$P[B] = P[B|A_1] P[A_1] + \ldots + P[B|A_N] P[A_N]$$

• Recall Total Probability: Given a mutually exclusive A_1, \ldots, A_N partition of Ω :

$$P[B] = P[B|A_1] P[A_1] + \ldots + P[B|A_N] P[A_N]$$

• For any A_i :

$$P[A_i|B] = \frac{P[A_i \& B]}{P[B]}$$
$$P[B|A_i] = \frac{P[A_i \& B]}{P[A_i]}$$

same RHS numerator

$$\Rightarrow$$

$$P[A_i|B] P[B] = P[B|A_i] P[A_i]$$

• Now rewrite, using total probability:

$$P[A_i|B] = \frac{P[B|A_i] P[A_i]}{P[B|A_1] P[A_1] + \ldots + P[B|A_N] P[A_N]}$$

- Known as Bayes' rule
- Utility: Hypothesis revision
 - $-A_i$: hypotheses
 - -B: new data
 - $P[B|A_i]$: anticipated data given hypothesis
 - $P[A_i]$: before-data (prior) "belief/confidence"
 - $P[A_i|B]$: after-data (posterior) belief/confidence

• Two coins:

- Coin 1: $P[H] = p_1$, $P[T] = (1 p_1)$
- Coin 2: $P[H] = p_2$, $P[T] = (1 p_2)$
- After seeing data, which coin is being used? Never know for sure, but can compute probabilities.
- Associate:
 - $-A_1$: using coin 1
 - $-A_2$: using coin 2
 - -B: observed data
- Suppose we see 2 flips of coin: HH
 - $\operatorname{P} \left[HH|A_1 \right] = p_1^2$ $\operatorname{P} \left[HH|A_2 \right] = p_2^2$
- Similar with other flips, HT, TH, TT.
- Now apply Bayes' rule:

$$P[A_i|B] = \frac{P[B|A_i] P[A_i]}{P[B|A_1] P[A_1] + P[B|A_2] P[A_2]}$$

• Numerical example: $P[A_1] = 0.3$, $P[A_2] = 0.7$, $p_1 = 0.9$, $p_2 = .5$, B = HH:

$$P[A_1|HH] = \frac{(0.9)^2(0.3)}{(0.9^2)(0.3) + (0.5)^2(0.7)} = 0.58$$
$$P[A_2|HH] = \frac{(0.5)^2(0.7)}{(0.9^2)(0.3) + (0.5)^2(0.7)} = 0.42$$

i.e., increased suspicion of cheating!

• DEFINE: Events A and B are INDEPENDENT if

$$\mathbf{P}\left[A \cap B\right] = \mathbf{P}\left[A\right]\mathbf{P}\left[B\right]$$

• In terms of conditional probability:

$$P[A|B] = \frac{P[A \cap B]}{P[B]} = \frac{P[A] P[B]}{P[B]} = P[A] \quad \text{(if independent!)}$$

- Information of B does not affect probability of A.
- Example: Fair dice
 - $-A = \mathsf{doubles}$
 - $-B = \mathrm{sum} \ \mathrm{of} \ \mathrm{roll} \leq 3$
 - $P[A \cap B] = 1/36 = P[A] P[B] = (1/6)(3/36)$? Not independent.
 - Changing B to event (first die = 3) results in independence.
- Independence depends on events A & B AND underlying probabilities.

 \bullet Conditional independence: Given an event C, the events A and B are conditionally independent given C if

$$\mathbf{P}\left[A \cap B|C\right] = \mathbf{P}\left[A|C\right]\mathbf{P}\left[B|C\right]$$

• Rewrite:

$$P[A \cap B|C] = \frac{P[A \cap B \cap C]}{P[C]} = \frac{P[A|(B \cap C)]P[B \cap C]}{P[C]} = P[A|(B \cap C)]P[B|C]$$

$$\Rightarrow (under conditional independence)$$

$$P[A|C] = P[A|(B \cap C)]$$

i.e., additional knowledge of ${\cal B}$ does not affect probability of ${\cal A}$

- Conditioning may change independence.
- Example: Two coins. Probability of heads for each coin p_A and p_B
 - Randomly choose coin (A, B) with probability (q, 1-q)
 - Toss selected coin $2\ {\rm times}$
 - Events:

 $E_1 =$ heads on first toss

 $E_2 =$ heads on second toss

 $E_0 = \text{choose coin } A$

- QUESTION: Are E_1 and E_2 independent? No.

$$\mathbf{P}\left[E_1 \& E_2\right] = \mathbf{P}\left[E_1\right] \mathbf{P}\left[E_2\right]?$$

$$P[E_1\&E_2|E_0] P[E_0] + P[E_1\&E_2|E_0^c] P[E_0^c] = p_A^2 q + p_B^2(1-q) = (p_A q + p_B(1-q)) (p_A q + p_B(1-q))?$$

- Are E_1 and E_2 conditionally independent on E_0 ? Yes.

$$P[E_1 \& E_2 | E_0] = p_A^2 = P[E_1 | E_0] P[E_2 | E_0]$$

• Mutual independence: A set of events A_1, \ldots, A_N are mutually independent if for any sub-collection, S

$$\mathbf{P}\left[\bigcap_{i\in S}A_i\right] = \Pi_{i\in S}\mathbf{P}\left[A_i\right]$$

- Pairwise independence does not imply mutual independence.
- Example: 2 fair dice

-A: doubles; B: first die = 6; C: second die = 1.

$i \backslash j$	1	2	3	4	5	6
1	(A, C)	•	•	•	•	•
2	C	A	•	•	•	•
3	C	•	A	•	•	•
4	C	•	•	A	•	•
5	C	•	•	•	A	•
6	(B,C)	B	B	B	B	(A, B

)

- -A&B are independent, A&C are independent, B&C are independent.
- $P [A \& B \& C] = 0 \neq P [A] P [B] P [C]$