Dynamic Programming Lecture \#4

Outline:

- Probability Review, cont
- Bernoulli trials
- Random variables
- Expectation
- Conditional expectation
- Independence
- Laws of large numbers

Bernoulli Trials

- Setup:
- N experiements
- Each experiment has 2 outcomes (H / T).
- Perform multiple independent identical experiments.
- "Identical" means identical probabilities, not outcomes.
- Assume $\mathrm{P}[H]=p$ for any toss (independent \& identical experiments).
- $\Omega=$ binary sequences of length N, e.g.,

$$
\omega=\underbrace{H H T H T T \ldots H T T H}_{N \text { terms }}
$$

- Q1: Probability of a specific $\omega \in \Omega$?
- Example: $N=3, \omega=H H T$ is the event:
- First toss: H, AND
- Second toss: H, and
- Third toss: T
- Independence assumption: $\mathrm{P}[A \& B \& C]=\mathrm{P}[A] \mathrm{P}[B] \mathrm{P}[C]$
- Identical experiment assumption $\Rightarrow \mathrm{P}[H H T]=p \times p \times(1-p)$
- Ans1: For a specific $\omega: p^{(\# \text { heads })}(1-p)^{(\# \text { tails })}$

Bernoulli Trials, cont

- Q2: Probability that N tosses results in k heads?
- How many ways can k heads occur? $\binom{N}{k}=\frac{N!}{(N-k)!k!}$
- Ans2: Each of these is a disjoint event, therefore

$$
\begin{gathered}
\mathrm{P}[k \text { heads }]=\underbrace{p^{k}(1-p)^{(N-k)}+\ldots+p^{k}(1-p)^{(N-k)}}_{\text {sum of individual probabilities }} \\
\Rightarrow \\
\mathrm{P}[k \text { heads }]=\binom{N}{k} p^{k}(1-p)^{(N-k)}
\end{gathered}
$$

- Example: $p=0.7, N=20$:

- Notice peak at $14=p \times N$
- Important note: Nobody tossed a coin...derivation based on assumptions and probability axioms.

Discrete Random Variables

- Given:
- Countable sample space Ω
- Probability assignment:

$$
\mathrm{P}[A]=\sum_{\omega \in A} \mathrm{P}[\omega]
$$

i.e., probability of an event, A, is sum of probabilities of individual elements of A.

- Define: A "random variable" (RV), X, is a FUNCTION mapping Ω to real numbers.
- Notation: $x=X(\omega)$ (must distinguish between the function and the value.)
- Examples:
- $X=$ number of heads in a Bernoulli trial

$$
X(H H T H)=3, \quad X(T T H T)=1
$$

$-X=$ toss resulting in first heads

$$
X(H H T H)=1, \quad X(T T H T)=3
$$

$-X=$ sum of rolls of dice

$$
X(i, j)=i+j
$$

$-X=$ maximum roll of dice

$$
X(i, j)=\max (i, j)
$$

- Same Ω yields different RV's.

Discrete Random Variables, cont

- Random variables provide a convenient and more expressive way to represent events.
- Example: Two dice, $X(i, j)=i+j$.
$-X=2$: The event $(1,1)$
$-X \geq$ 11: The event $(5,6) \cup(6,5) \cup(6,6)$
$-X \neq 12$: The event $(i, j) \neq(6,6)$

$$
\mathrm{P}[X \neq 12]=1-p_{66}
$$

- Example: Bernoulli trials, N tosses, $X(\cdot)$ is number of heads.
$-X=k$: The event k heads.
$-X<k$: Fewer than k heads:

$$
\mathrm{P}[X<k]=\sum_{j=0}^{k-1}\binom{N}{j} p^{j}(1-p)^{(N-j)}
$$

- As before, translate condition on X to a subset of Ω.
- As before... "nothing happened".

Probability Mass Function (pmf)

- Define: The probability mass function (pmf) of a discrete random variable as

$$
p_{X}(x)=\mathrm{P}[X=x]
$$

- How to compute pmf?
- For each x, find all ω such that $X(\omega)=x$
- Sum their probabilities
(Can be clumsy.)
- Example: Two dice, $X(i, j)=i+j$

$$
\begin{gathered}
p_{X}(1)=0 \\
p_{X}(2)=p_{11} \\
p_{X}(3)=p_{12}+p_{21} \\
p_{X}(4)=p_{13}+p_{22}+p_{31} \\
\text { etc }
\end{gathered}
$$

where $p_{i j}=\mathrm{P}[(i, j)]$.

Expectation

- Define: The "expected value" of X

$$
\mathrm{E}[X]=\sum_{x} x p_{X}(x)
$$

- Expected value is a weighted sum:
- All values $X(\omega)$ can take...
- Weighted by the probability it takes that value
- FACT: An alternative formula (and usually more convenient) is

$$
\mathrm{E}[X]=\sum_{\omega \in \Omega} X(\omega) \mathrm{P}[\omega]
$$

- Example: Bernoulli trials, $N=2, X=$ number of heads:

$$
\mathrm{E}[X]=\left(2 \times p_{H H}\right)+\left(1 \times\left(p_{H T}+p_{T H}\right)\right)+\left(0 \times p_{T T}\right)
$$

vS

$$
\mathrm{E}[X]=\left(2 \times p_{H H}\right)+\left(1 \times p_{H T}\right)+\left(1 \times p_{T H}\right)+\left(0 \times p_{T T}\right)
$$

- Example: $\Omega=\{-2,-1,0,1,2\}$, uniform probability:
$-X(\omega)=\omega:$

$$
\mathrm{E}[X]=-2 / 5+-1 / 5+0 / 5+1 / 5+2 / 5=0
$$

- Let $Y=X^{2}$. This defines a a new RV:

$$
\mathrm{E}[Y]=(-2)^{2} / 5+(-1)^{2} / 5+0^{2} / 5+1^{2} / 5+2^{2} / 5=5
$$

Examples

- Example: Pair of dice:
$-\mathrm{RV}_{1}: X_{1}=i+j=$ sum of rolls.

$$
\begin{aligned}
\mathrm{E}\left[X_{1}\right]= & \sum_{i} \sum_{j} x_{1}(i, j) p_{i j} \\
= & (1+1) p_{11}+(1+2) p_{12}+(1+3) p_{13}+\ldots+ \\
& (2+1) p_{21}+(2+2) p_{22}+\ldots
\end{aligned}
$$

$-\mathrm{RV}_{2}: X_{2}=\max (i, j)=$ maximum of rolls.

$$
\begin{aligned}
\mathrm{E}\left[X_{2}\right]= & \sum_{i} \sum_{j} x_{2}(i, j) p_{i j} \\
= & \max (1,1) p_{11}+\max (1,2) p_{12}+\max (1,3) p_{13}+\ldots+ \\
& \max (2,1) p_{21}+\max (2,2) p_{22}+\ldots
\end{aligned}
$$

- Example: Bernoulli trials, $N=\infty$ (what is Ω ?), $X=$ number of tosses until first head:

$$
\mathrm{E}[X]=1 p+2(1-p) p+3(1-p)^{2} p+4(1-p)^{3} p+\ldots=\sum_{k=1}^{\infty} k(1-p)^{(k-1)} p
$$

- Example: Heavy tails
- X takes on values $1,2,3, \ldots$
$-p_{X}(k)=\frac{c}{k^{2}}$

$$
\mathrm{E}[X]=\sum k \frac{c}{k^{2}}=\sum \frac{c}{k}=\infty ? ?!!!
$$

- Not all RV's have expected values!
- Heavy tailed pmf's used to model rare (and catastrophic) events.

Conditional Expectation

- Define conditional pmf:

$$
p_{X \mid A}(x)=\mathrm{P}[X=x \mid A]
$$

- Define conditional expectation:

$$
\mathrm{E}[X \mid A]=\sum_{x} x p_{X \mid A}(x)
$$

- Example: Fair dice.

\[

\]

$$
\begin{aligned}
& \mathrm{E}[X]=\sum_{x} x \mathrm{P}[X=x] \\
& \quad=(2)(1 / 36)+(3)(2 / 36)+(4)(3 / 36)+\ldots+(11)(2 / 36)+(12)(1 / 36)=252 / 36=7 \\
& \mathrm{E}[X \mid X \leq 3] \\
& \quad=(2) \mathrm{P}[X=2 \mid X \leq 3]+(3) \mathrm{P}[X=3 \mid X \leq 3]+0+\ldots+0 \\
& \quad=(2)\left(\frac{1 / 36}{3 / 36}\right)+(3)\left(\frac{2 / 36}{3 / 36}\right)=(2)(1 / 3)+(3)(2 / 3)=3\left(\frac{1}{3}\right) \\
& \mathrm{E}[X \mid \text { even }] \\
& \quad=(2) \mathrm{P}[X=2 \mid \text { even }]+(3) \mathrm{P}[X=3 \mid \text { even }]+\ldots \\
& \quad+(11) \mathrm{P}[X=11 \mid \text { even }]+12 \mathrm{P}[X=12 \mid \text { even }]=7
\end{aligned}
$$

Conditional Expectation \& Independence

- Can condition on another random variable, e.g.,

$$
\mathrm{E}\left[X_{1} \mid X_{2}=x_{2}\right]=\sum_{i} x_{1}\left(\omega_{i}\right) \mathrm{P}\left[\omega_{i} \mid X_{2}=x_{2}\right]
$$

- Dice Example: $\mathrm{E}\left[X_{1} \mid X_{2}=2\right]=$?

$$
\begin{gathered}
\begin{array}{c}
(1+1) P(i=1, j=1 \mid \max (i, j)=2) \\
\quad+(1+2) P(i=1, j=2 \mid \max (i, j)=2)+(2+1) P(i=2, j=1 \mid \max (i, j)=2)+(2+2) P(i=2, j=2 \mid \max (i, j)=2) \\
\\
= \\
(1+1) \frac{P(i=1, j=1, \max (i, j)=2)}{P(\max (i, j)=2)} \\
+(1+2) \frac{P(i=1, j=2, \max (i, j)=2)}{P(\max (i, j)=2)}+(2+1) \frac{P(i=2, j=1, \max (i, j)=2)}{P(\max (i, j)=2)}+(2+2) \frac{P(i=2, j=2, \max (i, j)=2)}{P(\max (i, j)=2)} \\
\\
= \\
(1+1) \frac{0}{p_{12}+p_{21}+p_{22}}+(1+2) \frac{p_{12}}{p_{12}+p_{21}+p_{22}}+(2+1) \frac{p_{21}}{p_{12}+p_{21}+p_{22}}+(2+2) \frac{p_{22}}{p_{12}+p_{21}+p_{22}}
\end{array}
\end{gathered}
$$

- Independence: RV's X_{1} and X_{2} are independent if

$$
\mathrm{P}\left[X_{1}=x_{1} \& X_{2}=x_{2}\right]=p_{X_{1}}\left(x_{1}\right) p_{X_{2}}\left(x_{2}\right)
$$

- Similar definition for multiple RV's

What's the connection?

- Informal probability setup:

> Random
> Event

Generator

- Suppose random event is coin toss: $\mathrm{H}=0$ vs $\mathrm{T}=1$
- Define "sample mean"

$$
M_{N}=\frac{\# \text { tails }}{N}
$$

Note: M_{N} is also random...don't expect same result for every set of samples.

- Informal probability DEFINITION:

$$
\lim _{N \rightarrow \infty} M_{N} \stackrel{\text { def }}{=} P(\mathrm{~T})
$$

- Is this consistent with formal probability framework?
- Define independent RV's:

$$
x_{i}= \begin{cases}1 & \mathrm{w} / \operatorname{prob} p \text { (tails); } \\ 0 & \mathrm{w} / \text { prob } 1-p \text { (heads) }\end{cases}
$$

- Define "sample mean"

$$
M_{N}=\frac{x_{1}+\ldots+x_{N}}{N}
$$

- M_{N} is a RV over

$$
\Omega_{N}=\Omega \times \Omega \times \ldots \times \Omega
$$

- Example $N=4: \Omega_{N}$ is set of H / T sequences of length 4 .

$$
P(H, H, T, H)=(1-p)^{3} p
$$

as a CONSEQUENCE of independence.

What's the connection? cont.

$$
M_{N}=\frac{x_{1}+\ldots+x_{N}}{N}
$$

- FACT: $\mathrm{E}\left[M_{N}\right]=\mathrm{E}[x]=p$.
- Weak law of large numbers:

$$
P\left(\left|M_{N}-p\right|>\varepsilon\right) \rightarrow 0 \text { as } N \rightarrow \infty
$$

- Expected value corresponds to "taking averages" ...but is NOT defined as average.
- Still allows M_{N} to deviate from p infinitely often with diminishing probability.
- Strong law of large numbers:

$$
P\left(\lim _{N \rightarrow \infty} M_{N}=p\right)=1
$$

- This is CONSEQUENCE of formulation...not definition of probability.
- Probability space in strong law is space of sequences.
- Conforms to informal frequency intuition!

