
Dynamic Programming Lecture #4

Outline:

• Probability Review, cont

– Bernoulli trials

– Random variables

– Expectation

– Conditional expectation

– Independence

– Laws of large numbers



Bernoulli Trials

• Setup:

– N experiements

– Each experiment has 2 outcomes (H/T ).

– Perform multiple independent identical experiments.

– “Identical” means identical probabilities, not outcomes.

• Assume P [H] = p for any toss (independent & identical experiments).

• Ω = binary sequences of length N , e.g.,

ω = HHTHTT . . .HTTH︸ ︷︷ ︸
N terms

• Q1: Probability of a specific ω ∈ Ω?

• Example: N = 3, ω = HHT is the event:

– First toss: H, and

– Second toss: H, and

– Third toss: T

• Independence assumption: P [A & B & C] = P [A] P [B] P [C]

• Identical experiment assumption ⇒ P [HHT ] = p× p× (1− p)

• Ans1: For a specific ω : p(# heads)(1− p)(# tails)



Bernoulli Trials, cont

• Q2: Probability that N tosses results in k heads?

• How many ways can k heads occur?

(
N
k

)
= N !

(N−k)!k!

• Ans2: Each of these is a disjoint event, therefore

P [k heads] = pk(1− p)(N−k) + . . . + pk(1− p)(N−k)︸ ︷︷ ︸
sum of individual probabilities

⇒

P [k heads] =

(
N

k

)
pk(1− p)(N−k)

• Example: p = 0.7, N = 20:
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• Notice peak at 14 = p×N

• Important note: Nobody tossed a coin...derivation based on assumptions and probability
axioms.



Discrete Random Variables

• Given:

– Countable sample space Ω

– Probability assignment:
P [A] =

∑
ω∈A

P [ω]

i.e., probability of an event, A, is sum of probabilities of individual elements of A.

• Define: A “random variable” (RV), X, is a function mapping Ω to real numbers.

• Notation: x = X(ω) (must distinguish between the function and the value.)

• Examples:

– X = number of heads in a Bernoulli trial

X(HHTH) = 3, X(TTHT ) = 1

– X = toss resulting in first heads

X(HHTH) = 1, X(TTHT ) = 3

– X = sum of rolls of dice
X(i, j) = i + j

– X = maximum roll of dice
X(i, j) = max(i, j)

• Same Ω yields different RV’s.



Discrete Random Variables, cont

• Random variables provide a convenient and more expressive way to represent events.

• Example: Two dice, X(i, j) = i + j.

– X = 2: The event (1, 1)

– X ≥ 11: The event (5, 6)
⋃

(6, 5)
⋃

(6, 6)

– X 6= 12: The event (i, j) 6= (6, 6)

P [X 6= 12] = 1− p66

• Example: Bernoulli trials, N tosses, X(·) is number of heads.

– X = k: The event k heads.

– X < k: Fewer than k heads:

P [X < k] =
k−1∑
j=0

(
N

j

)
pj(1− p)(N−j)

• As before, translate condition on X to a subset of Ω.

• As before...“nothing happened”.



Probability Mass Function (pmf)

• Define: The probability mass function (pmf) of a discrete random variable as

pX(x) = P [X = x]

• How to compute pmf?

– For each x, find all ω such that X(ω) = x

– Sum their probabilities

(Can be clumsy.)

• Example: Two dice, X(i, j) = i + j

pX(1) = 0

pX(2) = p11

pX(3) = p12 + p21

pX(4) = p13 + p22 + p31

etc

where pij = P [(i, j)].



Expectation

• Define: The “expected value” of X

E [X] =
∑
x
xpX(x)

• Expected value is a weighted sum:

– All values X(ω) can take...

– Weighted by the probability it takes that value

• Fact: An alternative formula (and usually more convenient) is

E [X] =
∑
ω∈Ω

X(ω)P [ω]

• Example: Bernoulli trials, N = 2, X = number of heads:

E [X] = ( 2× pHH ) + ( 1× (pHT + pTH) ) + ( 0× pTT )

vs

E [X] = ( 2× pHH ) + ( 1× pHT ) + ( 1× pTH ) + ( 0× pTT )

• Example: Ω = {−2,−1, 0, 1, 2}, uniform probability:

– X(ω) = ω:
E [X] = −2/5 +−1/5 + 0/5 + 1/5 + 2/5 = 0

– Let Y = X2. This defines a a new RV:

E [Y ] = (−2)2/5 + (−1)2/5 + 02/5 + 12/5 + 22/5 = 5



Examples

• Example: Pair of dice:

– RV1 : X1 = i + j = sum of rolls.

E [X1] =
∑
i

∑
j

x1(i, j)pij

= (1 + 1)p11 + (1 + 2)p12 + (1 + 3)p13 + . . .+
(2 + 1)p21 + (2 + 2)p22 + . . .

– RV2 : X2 = max(i, j) = maximum of rolls.

E [X2] =
∑
i

∑
j

x2(i, j)pij

= max(1, 1)p11 + max(1, 2)p12 + max(1, 3)p13 + . . .+
max(2, 1)p21 + max(2, 2)p22 + . . .

• Example: Bernoulli trials, N =∞ (what is Ω?), X = number of tosses until first head:

E [X] = 1p + 2(1− p)p + 3(1− p)2p + 4(1− p)3p + . . . =
∞∑
k=1

k(1− p)(k−1)p

• Example: Heavy tails

– X takes on values 1, 2, 3, ...

– pX(k) = c
k2

E [X] =
∑

k
c

k2
=
∑ c

k
=∞??!!!

– Not all RV’s have expected values!

– Heavy tailed pmf’s used to model rare (and catastrophic) events.



Conditional Expectation

• Define conditional pmf:
pX|A(x) = P [X = x|A]

• Define conditional expectation:

E [X|A] =
∑
x
xpX|A(x)

• Example: Fair dice.
i\j 1 2 3 4 5 6
1 · · · · · ·
2 · · · · · ·
3 · · · · · ·
4 · · · · · ·
5 · · · · · ·
6 · · · · · ·

X = i + j

E [X] =
∑
x
xP [X = x]

= (2)(1/36) + (3)(2/36) + (4)(3/36) + ... + (11)(2/36) + (12)(1/36) = 252/36 = 7

E [X|X ≤ 3]

= (2)P [X = 2|X ≤ 3] + (3)P [X = 3|X ≤ 3] + 0 + ... + 0

= (2) (
1/36
3/36 ) + (3) (

2/36
3/36 ) = (2)(1/3) + (3)(2/3) = 3 ( 1

3 )

E [X|even]

= (2)P [X = 2|even] + (3)P [X = 3|even] + ...

+(11)P [X = 11|even] + 12P [X = 12|even] = 7



Conditional Expectation & Independence

• Can condition on another random variable, e.g.,

E [X1|X2 = x2] =
∑
i

x1(ωi)P [ωi|X2 = x2]

• Dice Example: E [X1|X2 = 2] =?

(1 + 1)P (i = 1, j = 1|max(i, j) = 2)
+(1 + 2)P (i = 1, j = 2|max(i, j) = 2) + (2 + 1)P (i = 2, j = 1|max(i, j) = 2) + (2 + 2)P (i = 2, j = 2|max(i, j) = 2)

=

(1 + 1)
P (i = 1, j = 1,max(i, j) = 2)

P (max(i, j) = 2)

+(1 + 2)
P (i = 1, j = 2,max(i, j) = 2)

P (max(i, j) = 2)
+ (2 + 1)

P (i = 2, j = 1,max(i, j) = 2)

P (max(i, j) = 2)
+ (2 + 2)

P (i = 2, j = 2,max(i, j) = 2)

P (max(i, j) = 2)

=

(1 + 1)
0

p12 + p21 + p22
+ (1 + 2)

p12
p12 + p21 + p22

+ (2 + 1)
p21

p12 + p21 + p22
+ (2 + 2)

p22
p12 + p21 + p22

• Independence: RV’s X1 and X2 are independent if

P [X1 = x1&X2 = x2] = pX1
(x1)pX2

(x2)

• Similar definition for multiple RV’s



What’s the connection?

• Informal probability setup:

Random
Event
Generator

x

• Suppose random event is coin toss: H=0 vs T=1

• Define “sample mean”

MN =
# tails

N
Note: MN is also random...don’t expect same result for every set of samples.

• Informal probability definition:

lim
N→∞

MN
def= P (T)

• Is this consistent with formal probability framework?

– Define independent RV’s:

xi =

{
1 w/ prob p (tails);
0 w/ prob 1− p (heads)

– Define “sample mean”

MN =
x1 + . . . + xN

N

– MN is a RV over
ΩN = Ω× Ω× . . .× Ω

– Example N = 4: ΩN is set of H/T sequences of length 4.

P (H,H, T,H) = (1− p)3p

as a consequence of independence.



What’s the connection? cont.

MN =
x1 + . . . + xN

N

• Fact: E [MN ] = E [x] = p.

• Weak law of large numbers:

P (|MN − p| > ε)→ 0 as N →∞

• Expected value corresponds to “taking averages”...but is not defined as average.

• Still allows MN to deviate from p infinitely often with diminishing probability.

• Strong law of large numbers:

P ( lim
N→∞

MN = p) = 1

• This is consequence of formulation...not definition of probability.

• Probability space in strong law is space of sequences.

• Conforms to informal frequency intuition!


