Dynamic Programming Lecture \#5

Outline:

- Finite state Markov chains
- Viterbi Algorithm

Finite State Markov Chains

- Restrict attention to finite state systems:

$$
x_{k} \in X=\{1,2, \ldots, N\}
$$

- Simple example: Machine up/down dynamics:

- Define $p_{i j}=$ probability to jump from state i to state j
- Back to example: Set $x=\left\{\begin{array}{ll}1 & \text { up } \\ 2 & \text { down }\end{array}\right.$.

$$
p_{12}=\text { probability of failure given up }
$$

$1-p_{12}=$ probability of no failure given up
$p_{21}=$ probability of repair given down
$p_{22}=$ probability of no repair given down

- Staged evolution: Random jumps

Stochastic Matrices

- Define "stochastic matrix":

$$
P=\left[p_{i j}\right]=\left(\begin{array}{ll}
p_{11} & p_{12} \\
p_{21} & p_{22}
\end{array}\right)
$$

Note: Each row sums to 1.

- Q: What is $\operatorname{Pr}\left(x_{k}=j \mid x_{0}=i\right)$?
- A: $\left(P^{k}\right)_{i j}$, i.e.,

$$
(\underbrace{P \cdot P \ldots P}_{k \text { times }})_{i j} \text { element }
$$

- Proof: Index over immediate predecessor (total probability):

$$
\begin{aligned}
& \operatorname{Pr}\left(x_{2}=j \mid x_{0}=i\right)=\sum_{k} \operatorname{Pr}\left(x_{2}=j \mid x_{0}=i \& x_{1}=k\right) \operatorname{Pr}\left(x_{1}=k \mid x_{0}=i\right) \\
&=\sum_{k}^{k} p_{k j} p_{i k} \\
&=\left(P_{i^{\text {th }} \text { row }}\right)\left(P_{j^{\text {th }} \text { column }}\right) \\
& \operatorname{Pr}\left(x_{3}=j \mid x_{0}=i\right)=\sum_{k} \operatorname{Pr}\left(x_{3}=j \mid x_{0}=i \& x_{2}=k\right) \operatorname{Pr}\left(x_{2}=k \mid x_{0}=i\right) \quad \text { etc }
\end{aligned}
$$

Probability Density Propagation

- Suppose we don't know x_{0} but have a probability distribution:

$$
\begin{gathered}
x_{0} \sim\left(q_{0}^{1}, q_{0}^{2}, \ldots, q_{0}^{N}\right) \quad \text { (row vector) } \\
q_{0}^{i}=\operatorname{Pr}\left(x_{0}=i\right)
\end{gathered}
$$

- Q: What is $q_{1}^{j}=\operatorname{Pr}\left(x_{1}=j\right)$? (via total probability)

$$
\begin{aligned}
\operatorname{Pr}\left(x_{1}=j\right) & =\sum_{i} \operatorname{Pr}\left(x_{1}=j \mid x_{0}=i\right) \operatorname{Pr}\left(x_{0}=i\right) \\
& =\sum_{i} p_{i j} q_{0}^{i} \\
& =\left(\begin{array}{lll}
q_{0}^{1} & \ldots & q_{0}^{N}
\end{array}\right) \underbrace{\left(\begin{array}{c}
p_{1 j} \\
\vdots \\
p_{N j}
\end{array}\right)}_{j^{\text {th }}} \\
\Rightarrow q_{1} & =q_{0} P \Rightarrow q_{k}=q_{0} P^{k} \text { or } q^{+}=q P
\end{aligned}
$$

Hidden Markov models

- Now suppose at each state we get an observation.
- Set $r(z ; i, j)=$ probability of observing value z given a transition $i \rightarrow j$.
- Let $q^{i}=$ probability of being at state i (belief propagation).
- Derive $q^{+}=\Phi(q, z)$.

$$
\begin{aligned}
\left(q^{i}\right)^{+} & =\frac{\operatorname{Pr}\left(x^{+}=i \& \text { observe } z\right)}{\operatorname{Pr}(\text { observe } z)} \\
& =\frac{\sum_{j} \operatorname{Pr}\left(x^{+}=i \& \text { observe } z \mid x=j\right) \operatorname{Pr}(x=j)}{\sum_{s} \sum_{j} \operatorname{Pr}\left(x^{+}=s \& \text { observe } z \mid x=j\right) \operatorname{Pr}(x=j)} \\
& =\frac{\sum_{j} p_{j i} q^{j} r(z ; j, i)}{\sum_{s} \sum_{j} p_{j s} q^{j} r(z ; j, s)}
\end{aligned}
$$

- Deterministic evolution!
- Akin to Kalman filter

Viterbi Algorithm

- Given an observation sequence:

$$
\mathbf{Z}=\left\{z_{1}, z_{2}, \ldots, z_{N}\right\}
$$

what is the "most likely" state sequence?

$$
\mathbf{X}=\left\{x_{0}, x_{1}, \ldots, x_{N}\right\}
$$

i.e.,

$$
\begin{aligned}
\hat{\mathbf{X}} & =\arg \max \operatorname{Pr}(\mathbf{X} \mid \mathbf{Z}) \\
& =\arg \max \frac{\operatorname{Pr}(\mathbf{X} \cap \mathbf{Z})}{\operatorname{Pr}(\mathbf{Z})}
\end{aligned}
$$

- Since denominator is a fixed value, we maximize

$$
\hat{\mathbf{X}}=\arg \max \operatorname{Pr}(\mathbf{X} \cap \mathbf{Z})
$$

- Notation:
- Interval of sequence: $\mathbf{X}_{[i, j]}=\left\{x_{i}, \ldots, x_{j}\right\}$
- Initial condition probability: $\pi_{x_{0}}$
- Rewrite:

$$
\begin{aligned}
\operatorname{Pr}(\mathbf{X} \cap \mathbf{Z}) & =\pi_{x_{0}} \operatorname{Pr}\left(\mathbf{X}_{[1, N]} \cap \mathbf{Z} \mid x_{0}\right) \\
& =\pi_{x_{0}} \operatorname{Pr}\left(x_{1}, z_{1} \mid x_{0}\right) \operatorname{Pr}\left(\mathbf{X}_{[2, N]} \cap \mathbf{Z}_{[2, N]} \mid \mathbf{X}_{[0,1]}, z_{1}\right) \\
& =\pi_{x_{0}} p_{x_{0} x_{1}} r\left(z_{1} ; x_{0}, x_{1}\right) \operatorname{Pr}\left(\mathbf{X}_{[2, N]} \cap \mathbf{Z}_{[2, N]} \mid \mathbf{X}_{[0,1]}, z_{1}\right)
\end{aligned}
$$

- Likewise:

$$
\begin{aligned}
\operatorname{Pr}\left(\mathbf{X}_{[2, N]} \cap \mathbf{Z}_{[2, N]} \mid \mathbf{X}_{[0,1]}, z_{1}\right) & =\operatorname{Pr}\left(x_{2}, z_{2} \mid \mathbf{X}_{[0,1]}, z_{1}\right) \operatorname{Pr}\left(\mathbf{X}_{[3, N]} \cap \mathbf{Z}_{[3, N]} \mid \mathbf{X}_{[0,2]}, \mathbf{Z}_{[1,2]}\right) \\
& =\operatorname{pax}_{x_{1} x_{2}} r\left(z_{2} ; x_{1}, x_{2}\right) \operatorname{Pr}\left(\mathbf{X}_{[3, N]} \cap \mathbf{Z}_{[3, N]} \mid \mathbf{X}_{[0,2]}, \mathbf{Z}_{[1,2]}\right)
\end{aligned}
$$

Viterbi Algorithm, cont

- Finally...

$$
\operatorname{Pr}(\mathbf{X} \cap \mathbf{Z})=\pi_{x_{0}} \Pi_{k=1}^{N} p_{x_{k-1} x_{k}} r\left(z_{k} ; x_{k-1}, x_{k}\right)
$$

- Equivalent optimization: Maximize $\log (\cdot)$ or minimize $-\log (\cdot)$, i.e.,

$$
-\log \left(\pi_{x_{0}}\right)-\sum_{k=1}^{N} \log \left(p_{x_{k-1} x_{k}} r\left(z_{k} ; x_{k-1}, x_{k}\right)\right)
$$

over

$$
\left\{x_{0}, x_{1}, \ldots, x_{N}\right\}
$$

- This looks like (deterministic!) shortest path problem:

$$
\begin{gathered}
\lambda_{s i}^{0}=-\log \left(\pi_{i}\right) \\
\lambda_{i j}^{k}=-\log \left(p_{i j} r\left(z_{k} ; i, j\right)\right)
\end{gathered}
$$

- Deterministic shortest path can be solved forward. Let $D_{k}(i)$ denote minimum arrival distance:

$$
D_{k+1}(i)=\min _{j}\left\{D_{k}(j)+\lambda_{j i}^{k}\right\}
$$

