Dynamic Programming Lecture \#6

Outline:

- Worst case DP
- Stochastic DP preview

Deterministic DP Review

- System:

$$
x_{k+1}=f_{k}\left(x_{k}, u_{k}\right)
$$

- State: $x_{k} \in S_{k}$
- Control (decision): $u_{k} \in U_{k}\left(x_{k}\right)$
- Policy shorthand: $\pi=\left\{\mu_{0}, \mu_{1}, \ldots, \mu_{N-1}\right\}$

$$
\mu_{k}: x_{k} \rightarrow u_{k} \in U_{k}\left(x_{k}\right)
$$

- Cost of policy π :

$$
J_{\pi}\left(x_{0}\right)=g_{N}\left(x_{N}\right)+\sum_{k=0}^{N-1} g_{k}\left(x_{k}, \mu_{k}\left(x_{k}\right)\right)
$$

- Optimization:

$$
J^{*}\left(x_{0}\right)=\min _{\pi} J_{\pi}\left(x_{0}\right)
$$

- Value iteration:

$$
\begin{gathered}
J_{N}\left(x_{N}\right)=g_{N}\left(x_{N}\right) \\
J_{k}\left(x_{k}\right)=\min _{u_{k} \in U_{k}\left(x_{k}\right)} g\left(x_{k}, u_{k}\right)+J_{k+1)}\left(f_{k}\left(x_{k}, u_{k}\right)\right)
\end{gathered}
$$

- Principle of optimality:

$$
\begin{gathered}
J^{*}\left(x_{0}\right)=J_{0}\left(x_{0}\right) \\
J_{k}\left(x_{k}\right)=\text { optimal cost-to-go at stage } k \\
\mu_{k}^{*}\left(x_{k}\right)=\arg \min g\left(x_{k}, u_{k}\right)+J_{k+1}\left(f_{k}\left(x_{k}, u_{k}\right)\right)
\end{gathered}
$$

Minimax/worst-case formulation

- Setup:

$$
\begin{gathered}
x_{k+1}=f_{k}\left(x_{k}, u_{k}, w_{k}\right) \\
u_{k} \in U_{k}\left(x_{k}\right) \\
w_{k} \in W_{k}\left(x_{k}, u_{k}\right)
\end{gathered}
$$

- Cost of policy:

$$
J_{\pi}\left(x_{0}\right)=\max _{w_{0}, w_{1}, \ldots, w_{N-1}} g_{N}\left(x_{N}\right)+\sum_{k=0}^{N-1} g_{k}\left(x_{k}, \mu_{k}\left(x_{k}\right), w_{k}\right)
$$

- Optimization:

$$
J^{*}\left(x_{0}\right)=\min _{\pi} J_{\pi}\left(x_{0}\right)
$$

- New element: Adversarial Disturbance
- Disturbance seeks to maximize cost
- Control commits to policy before disturbance acts
- Very different from control commits to actions
- Disturbance can be constrained by state/control
- Motivation:
- Design guarantees/verifiable performance
- Strategic interaction

Examples

- Disturbance rejection:

$$
\begin{gathered}
x_{k+1}=A x_{k}+B u_{k}+L w_{k} \\
\left|w_{k}\right| \leq 1
\end{gathered}
$$

Objective:

$$
\min _{\pi} \max _{w} \max _{k \geq 0}\left|C x_{k}\right|
$$

- Switching systems:

$$
\begin{gathered}
x_{k+1}=A\left(w_{k}\right) x_{k}+B u_{k} \\
A\left(w_{k}\right) \in\left\{A^{1}, A^{2}, \ldots, A^{m}\right\}
\end{gathered}
$$

Objective:

$$
\min _{\pi} \max _{w} \max _{k \geq 0}\left|C x_{k}\right|
$$

- More sophisticated disturbance model:

$$
\left|w_{k+1}-w_{k}\right| \leq \rho
$$

- "Disturbance" need not be adversarial, but worst case formulation provides guarantees

Rational \& Adversarial Disturbances

- Pursuit/Evasion:

$$
\begin{aligned}
& p_{k+1}=A_{p} p_{k}+B_{p} u_{k} \\
& e_{k+1}=A_{e} e_{k}+B_{e} w_{k} \\
& \text { (evursuer) } \\
& \text { (evader) }
\end{aligned}
$$

Objective:

$$
\min _{\pi} \max _{e}\left|C\left(p_{k}-e_{k}\right)\right|
$$

- Strategic games (chess, go, etc)
- Questioning rational models: Centipede game

- $C=$ Continue, $Q=$ Quit
- Reward to (u, w) is $(v,-v)$
- Rational model of opponent forces u to immediately quit...even after observing multiple missteps!?

Value Iteration

- Setup:

$$
\begin{gathered}
x_{k+1}=f_{k}\left(x_{k}, u_{k}, w_{k}\right) \\
u_{k} \in U_{k}\left(x_{k}\right) \\
w_{k} \in W_{k}\left(x_{k}, u_{k}\right)
\end{gathered}
$$

- Cost of policy:

$$
J_{\pi}\left(x_{0}\right)=\max _{w_{0}, w_{1}, \ldots, w_{N-1}} g_{N}\left(x_{N}\right)+\sum_{k=0}^{N-1} g_{k}\left(x_{k}, \mu_{k}\left(x_{k}\right), w_{k}\right)
$$

- Optimization:

$$
J^{*}\left(x_{0}\right)=\min _{\pi} J_{\pi}\left(x_{0}\right)
$$

- Value Iteration:

$$
\begin{gathered}
J_{N}\left(x_{N}\right)=g_{N}\left(x_{N}\right) \\
J_{k}\left(x_{k}\right)=\min _{u_{k} \in U\left(x_{k}\right)} \max _{w_{k} \in W\left(x_{k}, u_{k}\right)} g\left(x_{k}, u_{k}, w_{k}\right)+J_{k+1}\left(f_{k}\left(x_{k}, u_{k}, w_{k}\right)\right)
\end{gathered}
$$

Note: Left to right $=$ order of commitment

- Theorem:

$$
\begin{aligned}
& -J^{*}\left(x_{0}\right)=J_{0}\left(x_{0}\right) \\
& -\mu_{k}^{*}\left(x_{k}\right)=\arg \min _{u_{k} \in U\left(x_{k}\right)} \max _{w_{k} \in W\left(x_{k}, u_{k}\right)} g\left(x_{k}, u_{k}, w_{k}\right)+J_{k+1}\left(f_{k}\left(x_{k}, u_{k}, w_{k}\right)\right)
\end{aligned}
$$

Minimax Lemmas

- FACT: (minimax inequality)

$$
\min _{x \in X} \max _{y \in Y} G(x, y) \geq \max _{y \in Y} \min _{x \in X} G(x, y)
$$

Inspect: For any (x, y)

$$
\max _{y} G(x, y) \geq G(x, y) \geq \min _{x} G(x, y)
$$

LHS depends only on $x \&$ RHS depends only on y

$$
\min _{x} \operatorname{LHS}(x) \geq \max _{y} \operatorname{RHS}(y)
$$

- FACT: (minimax exchange)

$$
\min _{\mu(\cdot)} \max _{w} G(\mu(w), w)=\max _{w} \min _{u} G(u, w)
$$

Know

$$
\min _{\mu} \max _{w} G(\mu(w), w) \geq \max _{w} \min _{\mu} G(\mu(w), w)=\max _{w} \min _{u} G(u, w)
$$

Use

$$
\mu^{*}(w)=\arg \min _{u} G(u, w)
$$

to show equality

Proof of Value Iteration

- Special case: $N=2$
- $J_{2}\left(x_{2}\right)=g_{2}\left(x_{2}\right)$
- $J_{1}\left(x_{1}\right)=\min _{u_{1}} \max _{w_{1}} g_{1}\left(x_{1}, u_{1}, w_{1}\right)+J_{2}\left(f_{1}\left(x_{1}, u_{1}, w_{1}\right)\right)$
- $J_{0}^{*}\left(x_{0}\right)=$

$$
\min _{\mu_{0}} \min _{\mu_{1}} \max _{w_{0}} \max _{w_{1}} G^{\prime}\left(\mu_{0}, \mu_{1}, w_{0}, w_{1} ; x_{0}\right)
$$

- Define

$$
G\left(\mu_{0}, \mu_{1}, w_{0} ; x_{0}\right)=\max _{w_{1}} G^{\prime}\left(\mu_{0}, \mu_{1}, w_{0}, w_{1} ; x_{0}\right)
$$

- Now faced with

$$
\min _{\mu_{0}} \min _{\mu_{1}} \max _{w_{0}} G\left(\mu_{0}, \mu_{1}, w_{0} ; x_{0}\right)
$$

Note that for x_{0} and μ_{0} specified, x_{1} is effectively a function of w_{0}

- Apply minimax exchange and restate G^{\prime}

$$
\min _{\mu_{0}} \max _{w_{0}} \min _{u_{1}} \max _{w_{1}} G^{\prime}(\cdot)
$$

- Expand definitions to show that

$$
J_{0}^{*}\left(x_{0}\right)=J_{0}\left(x_{0}\right)
$$

Example

- Scalar linear system:

$$
\begin{gathered}
x_{k+1}=x_{k}+u_{k}+w_{k}, \quad\left|w_{k}\right| \leq 1 \\
g(x, u, w)=|x|+(3 / 2)|u| \\
g_{N}(x)=|x| \\
N=2
\end{gathered}
$$

- $J_{2}(x)=|x|$
- J_{1} :
$-J_{1}(x)=\min _{u} \max _{|w| \leq 1}|x|+(3 / 2)|u|+|x+u+w|$
- Worst case w aligned with $x+u$
- Best case u at vertex, either $u=0$ or $u=-x$
- Compare:

$$
\begin{gathered}
u=0:|x|+0+|x|+1 \\
u=-x:|x|+(3 / 2)|x|+1
\end{gathered}
$$

- Therefore,

$$
J_{1}(x)=2|x|+1 \quad \& \quad \mu_{1}^{*}\left(x_{1}\right)=0
$$

- J_{0} :

$$
\begin{gathered}
J_{0}(x)=\min _{u} \max _{|w| \leq 1}|x|+(3 / 2)|u|+2|x+u+w|+1 \\
u=0: J_{0}(x)=|x|+0+2|x|+2+1 \\
u=-x: J_{0}(x)=|x|+(3 / 2)|x|+2+1
\end{gathered}
$$

- Therefore,

$$
J_{0}(x)=(5 / 2)|x|+3 \quad \& \quad \mu_{0}^{*}(x)=-x
$$

Stochastic DP Preview

- Objective: Study systems with random phenomena.
- Example: Inventory control

$$
x_{k+1}=x_{k}+u_{k}-w_{k}
$$

$-x= \begin{cases}\text { inventory } & x>0 \\ \text { backlog } & x<0\end{cases}$
$-u=$ production
$-w=$ demand

- Total cost:

$$
R\left(x_{N}\right)+\sum_{k=0}^{N-1} r\left(x_{k}\right)+c u_{k}
$$

terminal cost + sum of stage cost \& production cost

- How to model w ?
- Worst case:

$$
\min _{\mu_{0}, \ldots, \mu_{N-1}} \max _{w \in \mathcal{W}} \text { etc }
$$

- "Random":

$$
\min _{\mu_{0}, \ldots, \mu_{N-1}} E(\text { etc })
$$

$-E \xlongequal{\text { def }}$ expected value $=$ average cost over lots of experiments

- Random formulation is a MODEL (not necessarily reality) that expresses unwillingness/futility of pursuing a more detailed model.

