Dynamic Programming Lecture \#7

Outline:

- Stochastic DP algorithm
- Simple example
- Repeated prisoner's dilemma
- LQ optimal control

Stochastic DP

- System:

$$
\begin{array}{cl}
& x_{k+1}=f_{k}\left(x_{k}, u_{k}, w_{k}\right) \\
x_{k} \in S_{k}, & u_{k} \in U_{k}\left(x_{k}\right), \quad w_{k} \in W_{k}\left(x_{k}, u_{k}\right)
\end{array}
$$

- Assume:
- w_{k} is an RV on some probability space Ω_{k}
- Probability function $p\left(w_{k}\right)$ can depend on $x_{k} \& u_{k}$.
- Probability function CANNOT depend on w_{0}, \ldots, w_{k-1}.
- More precisely:

$$
p_{W_{k}}\left(w_{k} \mid x_{k}, u_{k}\right)=p_{W_{k}}\left(w_{k} \mid x_{0}, \ldots, x_{k}, u_{0}, \ldots, u_{k}, w_{0}, \ldots, w_{k-1}\right)
$$

- Objective:

$$
J^{*}\left(x_{0}\right)=\min _{\mu_{0}, \ldots, \mu_{N-1}} E_{w_{0}, \ldots, w_{N-1}}\left\{g_{N}\left(x_{N}\right)+\sum_{k=0}^{N-1} g_{k}\left(x_{k}, \mu_{k}\left(x_{k}\right), w_{k}\right)\right\}
$$

- Interpretation:
- Total probability space $\Omega=\Omega_{0} \times \ldots \times \Omega_{N-1}$.
- Given admissible policy, value between $\{\cdot\}$ is an RV on Ω.
- Can enumerate possibilities \& probabilities to compute expected value.

Stochastic DP Algorithm

- Define

$$
\begin{gathered}
J_{N}\left(x_{N}\right)=g_{N}\left(x_{N}\right) \\
J_{k}\left(x_{k}\right)=\min _{u_{k} \in U_{k}\left(x_{k}\right)} E_{w_{k}}\left\{g_{k}\left(x_{k}, u_{k}, w_{k}\right)+J_{k+1}\left(f_{k}\left(x_{k}, u_{k}, w_{k}\right)\right)\right\}
\end{gathered}
$$

- Theorem:
$-J_{0}\left(x_{0}\right)=J^{*}\left(x_{0}\right)$
$-\mu_{k}\left(x_{k}\right)=\arg \min _{u_{k} \in U_{k}\left(x_{k}\right)} E_{w_{k}}\left\{g_{k}\left(x_{k}, u_{k}, w_{k}\right)+J_{k+1}\left(f_{k}\left(x_{k}, u_{k}, w_{k}\right)\right)\right\}$
$-J_{k}\left(x_{k}\right)=$ optimal cost-to-go (i.e., solution to subproblem).
- Proof by induction to show $J_{k}\left(x_{k}\right)=$ optimal cost-to-go
- Assume true for $J_{k+1}(\cdot)$.
- Show true for $J_{k}(\cdot)$.
- Start induction with $J_{N}(\cdot)$.
- Details of proof: Later...

Example

- Two states per stage: $\{1,2\}$.
- High road $(=1)$ costly...low road $(=2)$ cheap.
- On low road, can get a costly "bump" to high road with probability p :

$$
x^{+}=u+w, \quad u \in\{1,2\}, \quad W(u=1)=\{0\}, \quad W(u=2)=\{0,-1\}
$$

Example, cont (2)

- Apply DP with $p=1 / 4$:

$$
J_{3}(1)=1, \quad J_{3}(2)=0
$$

$$
\begin{aligned}
& J_{2}(1)=\min \left\{\begin{array}{l}
1+J_{3}(1) \\
\left(0+4+J_{3}(1)\right) p+\left(0+J_{3}(2)\right)(1-p)
\end{array}=\min \left\{\begin{array}{l}
1+1 \\
(0+4+1)(1 / 4)+(0+0)(3 / 4)
\end{array}=5 / 4\right. \text { (low) }\right. \\
& J_{2}(2)=\min \left\{\begin{array}{l}
1 / 2+J_{3}(1) \\
\left(0+4+J_{3}(1)\right) p+\left(0+J_{3}(2)\right)(1-p)
\end{array}=\left\{\begin{array}{l}
1 / 2+1 \\
(0+4+1)(1 / 4)+(0+0)(3 / 4)
\end{array}=5 / 4(\text { low })\right.\right. \\
& J_{1}(1)=\min \left\{\begin{array}{l}
1+J_{2}(1) \\
\left(0+4+J_{2}(1)\right) p+\left(0+J_{2}(2)\right)(1-p)
\end{array}=\left\{\begin{array}{l}
1+5 / 4 \\
(0+4+5 / 4)(1 / 4)+(0+5 / 4)(3 / 4)
\end{array}=9 / 4(\text { high or low }\right.\right. \\
& J_{1}(2)=\min \left\{\begin{array}{l}
1 / 2+J_{2}(1) \\
\left(0+4+J_{2}(1)\right)(1 / 4)+\left(0+J_{2}(2)\right)(3 / 4)
\end{array} \quad=7 / 4(\text { high })\right. \\
& J_{0}=\min \left\{\begin{array}{l}
1+J_{1}(1) \\
\left(0+4+J_{1}(1)\right)(1 / 4)+\left(0+J_{1}(2)\right)(3 / 4)
\end{array} \quad=2(\text { low })\right.
\end{aligned}
$$

- Result: Map of cost-to-go AND optimal decision.

Repeated Prisoner's Dilemma

	C	D
C	4,4	0,5
D	5,0	1,1

- Row $=$ "us", Column $=$ "them"
- Reward $=$ (us, them)
- "Dilemma": Defected is a "dominating" strategy for both players.
- Repeated PD: Play game over stages $[0,1, \ldots, N-1]$.
- Define:
$-u_{k}=$ Row's action at stage k
- $w_{k}=$ Column's action at stage k
- Opponent models:
- Tit-for-Tat:

$$
w_{k}= \begin{cases}u_{k-1}, & \text { with probability } p ; \\ D, & \text { with probability } 1-p\end{cases}
$$

- Grim trigger:

$$
w_{k}= \begin{cases}C, & \text { with probability } p \text { if } u_{0}, \ldots, u_{k-1}=C ; \\ D, & \text { with probability } 1-p \text { if } u_{0}, \ldots, u_{k-1}=C ; \\ D, & \text { if } u_{j}=D \text { for any } j<k .\end{cases}
$$

Typically, $p=1$.

DP for PD: Tit-for-Tat

- Set $M=\left(\begin{array}{ll}4 & 0 \\ 5 & 1\end{array}\right)$.
- Dynamics and costs:

$$
\begin{gathered}
x_{k+1}=u_{k} \\
g_{k}\left(x_{k}, u_{k}, w_{k}\right)=M_{u_{k} w_{k}} \\
g_{N}\left(x_{N}\right)=0
\end{gathered}
$$

- Stage $N-1, x_{N-1}=C$:

$$
\begin{gathered}
J_{N-1}(C)=\max \begin{cases}4 p+0 \cdot(1-p)+J_{N}(C), & u_{N-1}=C ; \\
5 p+1 \cdot(1-p)+J_{N}(D), & u_{N-1}=D .\end{cases} \\
\Rightarrow \\
J_{N-1}(C)=4 p+1 \quad \& \quad \mu_{N-1}^{*}(C)=D
\end{gathered}
$$

- Stage $N-1, x_{N-1}=D$:

$$
\begin{gathered}
J_{N-1}(D)=\max \begin{cases}0+J_{N}(C), & u_{N-1}=C \\
1+J_{N}(D), & u_{N-1}=D\end{cases} \\
\Rightarrow \\
J_{N-1}(D)=1 \quad \& \quad \mu_{N-1}^{*}(D)=D
\end{gathered}
$$

DP for PD: Tit-for Tat, cont.

- Stage $N-2, x_{N-2}=C$:

$$
J_{N-2}(C)=\max \begin{cases}4 p+0 \cdot(1-p)+(4 p+1), & u_{N-2}=C \\ 5 p+1 \cdot(1-p)+1, & u_{N-2}=D\end{cases}
$$

Accordingly, if

$$
4 p+4 p+1>4 p+1+1 \Leftrightarrow p>1 / 4
$$

then

$$
J_{N-2}(C)=8 p+1 \quad \& \quad \mu_{N-2}^{*}(C)=C
$$

- Stage $N-2, x_{N-2}=D$:

$$
J_{N-2}(D)=\max \begin{cases}0+(4 p+1), & u_{N-2}=C \\ 1+1, & u_{N-2}=D\end{cases}
$$

Accordingly, if

$$
4 p+1>1+1 \Leftrightarrow p>1 / 4
$$

then

$$
J_{N-2}(D)=4 p+1 \quad \& \quad \mu_{N-2}^{*}(D)=C
$$

DP for PD: Grim trigger

- As before, for $p>1 / 4$:

$$
\begin{gathered}
J_{N-1}(C)=4 p+1 \quad \& \quad \mu_{N-1}^{*}(C)=D \\
J_{N-1}(D)=1 \quad \& \quad \mu_{N-1}^{*}(D)=D \\
J_{N-2}(C)=8 p+1 \quad \& \quad \mu_{N-2}^{*}(C)=C
\end{gathered}
$$

- Not as before:

$$
\begin{gathered}
J_{N-2}(D)=\max \left\{\begin{array}{cc}
0+J_{N-1}(D), & u_{N-2}=C \\
1+J_{N-1}(D), & u_{N-2}=D
\end{array}\right. \\
\Rightarrow
\end{gathered}
$$

- In fact, $\mu_{k}^{*}(D)=D$
- Next question: What is optimal control versus μ^{*} ?

LQ Optimal Control

- Linear system (time-invariant):

$$
x^{+}=A x+B u+w, \quad E\{w\}=0
$$

$-x$: state

- u: control
$-w$: "process" disturbance
- Quadratic cost:

$$
\min _{\mu_{0}, \ldots, \mu_{N}} E\left\{x_{N}^{T} Q_{N} x_{N}+\sum_{k=0}^{N-1} x_{k}^{T} Q x_{k}+u_{k}^{T} u_{k}\right\}, \quad Q_{N} \geq 0
$$

- Assumptions: $Q=Q^{T}>0, Q_{N}=Q_{N}^{T} \geq 0$
- Recall: $Q>0$:

$$
x^{T} Q x>0, \quad \text { for all } x \neq 0
$$

- Interpretation: Want to minimize "energy" of state while not expending excessive energy of control, where

$$
\mathcal{E}[f]=\sum_{k} f_{k}^{T} Q f_{k}
$$

Compare to:

$$
\int i^{2} R \text { or } \int c v^{2}
$$

- Applications: Flutter control, vibration suppression, control law generation
- Q scales relative importance of terms \& state/control energy tradeoff
- Q_{N} penalize size of terminal state

LQ Optimal Control, cont

- $N-1$ recursion:

$$
J_{N}\left(x_{N}\right)=x_{N}^{T} Q_{N} x_{N}
$$

$$
\begin{aligned}
& J_{N-1}\left(x_{N-1}\right) \\
& =\min _{u_{N-1}} E_{w_{N-1}}\left\{x_{N-1}^{T} Q x_{N-1}+u_{N-1}^{T} u_{N-1}+J_{N}\left(A x_{N-1}+B u_{N-1}+w_{N-1}\right)\right\} \\
& =\min _{u_{N-1}} E\left\{x_{N-1}^{T} Q x_{N-1}+u_{N-1}^{T} u_{N-1}+\left(A x_{N-1}+B u_{N-1}+w_{N-1}\right)^{T} Q_{N}\left(A x_{N-1}+B u_{N-1}+w_{N-1}\right)\right\} \\
& =\min _{u_{N-1}} x^{T} x \text {-terms }+u^{T} u \text {-terms }+x^{T} u \text {-terms }+E\left\{w_{N-1}^{T} Q_{N} w_{N-1}\right\}
\end{aligned}
$$

Take $\frac{\partial}{\partial u_{N-1}}$:

$$
u_{N-1}=-\left(I+B^{T} Q_{N} B\right)^{-1} B^{T} Q_{N} A x_{N-1}
$$

and substitute to produce (quadratic!)

$$
J_{N-1}\left(x_{N-1}\right)=x_{N-1}^{T} P_{N-1} x_{N-1}+E\left\{w_{N-1}^{T} Q_{N} w_{N-1}\right\}
$$

where

$$
P_{N-1}=Q+A^{T} Q_{N} A-A^{T} Q_{N} B\left(I+B^{T} Q_{N} B\right)^{-1} B^{T} Q_{N} A
$$

LQ Optimal Control, cont

- $N-2$ recursion: Same analysis, but Q_{N} replaced by P_{N-1}.
- $k^{\text {th }}$ recursion:

$$
\begin{array}{r}
u_{k}=-\left(I+B^{T} P_{k+1} B\right)^{-1} B^{T} P_{k+1} A x_{k} \\
P_{k-1}=Q+A^{T} P_{k} A-A^{T} P_{k}\left(I+B^{T} P_{k} B\right)^{-1} B^{T} P_{k} A, \quad P_{N}=Q_{N} \\
J_{0}\left(x_{0}\right)=x_{0}^{T} P_{0} x_{0}+\sum_{k=0}^{N-1} E\left\{w_{k}^{T} P_{k+1} w_{k}\right\}
\end{array}
$$

- $P_{k} \geq 0$ by definition of positive cost.
- Comments:
- Indicative of DP: Find a recurring structure and exploit.
- DP leads to map of cost-to-go and optimal decision.
- Could have derived case where $A \& B$ vary with $k \ldots$ today's optimal action depends on tomorrow's model.

