Dynamic Programming Lecture \#8

Outline:

- Controlled Markov chains
- Value iteration proof

Controlled Markov Chains

- State transition probabilities are now a function of control input: $P(u)$
- Example: Machine repair.
- States $= \begin{cases}1 & \text { up } \\ 2 & \text { down }\end{cases}$
- Controls $= \begin{cases}S & \text { stop \& repair if needed } \\ C & \text { continue }\end{cases}$
- Control dependent transitions:

$$
P(C)=\left(\begin{array}{cc}
\operatorname{Pr}(\text { up } \mid \text { up }) & \operatorname{Pr}(\text { down } \mid \text { up }) \\
\operatorname{Pr}(\text { up } \mid \text { down }) & \operatorname{Pr}(\text { down } \mid \text { down })
\end{array}\right)=\left(\begin{array}{cc}
0.8 & 0.2 \\
0 & 1
\end{array}\right)
$$

- For a policy, $u=\mu(x)$,

$$
P(\mu)=\left(\begin{array}{c}
-1 \text { st row of } P(\mu(1))- \\
-2 \text { nd row of } P(\mu(2))- \\
\vdots \\
-k \text { th row of } P(\mu(k))- \\
\vdots \\
-n \text {th row of } P(\mu(n))-
\end{array}\right)
$$

Controlled Markov Chains \& Random Disturbances

- Original (stage invariant) setup:

$$
x_{k+1}=f\left(x_{k}, u_{k}, w_{k}\right)
$$

- Controlled Markov chains:

$$
\mathrm{P}\left[x_{k+1}=j \mid x_{k}=i, u_{k}\right]=p_{i j}\left(u_{k}\right)
$$

What happened to w ?

- Connection:

$$
\begin{gathered}
x_{k+1}=w_{k} \\
\mathrm{P}\left[w_{k}=j \mid x_{k}=i, u_{k}\right]=p_{i j}\left(u_{k}\right)
\end{gathered}
$$

- Value iteration:
- Assume stage cost does not depend on w (no loss of generality)
- Original setup:

$$
J_{k}\left(x_{k}\right)=\min _{u_{k} \in \mathcal{U}_{k}\left(x_{k}\right)} \mathrm{E}\left[g_{k}\left(x_{k}, u_{k}\right)+J_{k+1}\left(f\left(x_{k}, u_{k}, w_{k}\right)\right)\right]
$$

- Markov chain setup:

$$
J_{k}(i)=\min _{u_{k} \in \mathcal{U}_{k}(i)} g_{k}\left(i, u_{k}\right)+\sum_{j=1}^{n} J_{k+1}(j) p_{i j}\left(u_{k}\right)
$$

- Can also have stage dependent probabilities

Cost of Policy

- Policy: $\pi=\left\{\mu_{1}, \mu_{2}, \ldots, \mu_{N-1}\right\}$
- Transitions: $P_{k}\left(\mu_{k}\right)$
- $i^{\text {th }}$ coordinate row vector:

$$
e_{i}=\left(\begin{array}{lllllll}
0 & \ldots & 0 & 1 & 0 & \ldots & 0
\end{array}\right)
$$

- Policy dependent cost vector:

$$
G_{k}(\mu)=\left(\begin{array}{c}
g_{k}(1, \mu(1)) \\
g_{k}(2, \mu(2)) \\
\vdots \\
g_{n}(n, \mu(n))
\end{array}\right) \& G_{N}=\left(\begin{array}{c}
g_{N}(1) \\
g_{N}(2) \\
\vdots \\
g_{N}(n)
\end{array}\right)
$$

- Cost of trajectory $\left\{x_{0}, x_{1}, \ldots, x_{N}\right\}$ under π :

$$
J\left(x_{0}, \ldots, x_{N} ; \pi\right)=e_{x_{0}} G_{0}\left(\mu_{0}\right)+e_{x_{1}} G_{1}\left(\mu_{1}\right)+\ldots+e_{x_{N}} G_{N}
$$

- Expected cost of trajectory given x_{0} under π :

$$
\sum_{x_{0} \ldots x_{N}} J\left(x_{0}, \ldots, x_{N-1} ; \pi\right) \mathrm{P}\left[x_{0}, \ldots, x_{N} \mid x_{0}, \pi\right]
$$

Cost of Policy, cont

- Use $\mathrm{E}\left[\Sigma_{j} Z_{j}\right]=\sum_{j} \mathrm{E}\left[Z_{j}\right]$ on

$$
J\left(x_{0}, \ldots, x_{N} ; \pi\right)=e_{x_{0}} G_{0}\left(\mu_{0}\right)+e_{x_{1}} G_{1}\left(\mu_{1}\right)+\ldots+e_{x_{N}} G_{N}
$$

to rewrite expected cost given x_{0} under π :

$$
\begin{aligned}
\mathrm{E}\left[J\left(x_{0}, \ldots, x_{N-1} ; \pi\right) \mid x_{0}\right]= & e_{x_{0}} G_{0}\left(\mu_{0}\right) \\
& +\underbrace{e_{x_{0}} P_{0}\left(\mu_{0}\right)}_{q_{1}=\mathrm{E}\left[e_{x_{1}} \mid x_{0}, \mu_{0}\right]} G_{1}\left(\mu_{1}\right) \\
& +\underbrace{e_{x_{0}} P_{0}\left(\mu_{0}\right) P_{1}\left(\mu_{1}\right)}_{q_{2}=\mathrm{E}\left[e_{x_{2}} \mid x_{0}, \mu_{0}, \mu_{1}\right]} G_{2}\left(\mu_{2}\right)+\ldots \\
& +\underbrace{e_{x_{0}} P_{0}\left(\mu_{0}\right) P_{1}\left(\mu_{1}\right) \ldots P_{N-2}\left(\mu_{N-2}\right)}_{q_{N-1}=\mathrm{E}\left[e_{x_{N-1}} \mid x_{0}, \mu_{0}, \mu_{1}, \ldots, \mu_{N-2}\right]} G_{N-1}\left(\mu_{N-1}\right) \\
& +\underbrace{e_{x_{0}} P_{0}\left(\mu_{0}\right) P_{1}\left(\mu_{1}\right) \ldots P_{N-2}\left(\mu_{N-2}\right) P_{N-1}\left(\mu_{N-1}\right)}_{q_{N}=\mathrm{E}\left[e_{x_{N}} \mid x_{0}, \mu_{0}, \mu_{1}, \ldots, \mu_{N-1}\right]} G_{N}
\end{aligned}
$$

- Notice triangular structure in μ_{k} dependence!

Value Iteration Revisited

- Rewrite (for some function α and row vector β):

$$
\begin{aligned}
& \mathrm{E}\left[J\left(x_{0}, \ldots, x_{N-1} ; \pi\right) \mid x_{0}\right]= \\
& \quad \alpha\left(x_{0}, \mu_{0}, \ldots, \mu_{N-2}\right)+\beta\left(x_{0}, \mu_{0}, \ldots, \mu_{N-2}\right)\left(G_{N-1}\left(\mu_{N-1}\right)+P_{N-1}\left(\mu_{N-1}\right) G_{N}\right)
\end{aligned}
$$

- Accordingly:

$$
\begin{aligned}
& \min _{\mu_{0}, \ldots, \mu_{N-1}} \mathrm{E}\left[J\left(x_{0}, \ldots, x_{N-1} ; \pi\right) \mid x_{0}\right]= \\
& \quad \min _{\mu_{0}, \ldots, \mu_{N-1}} \alpha\left(x_{0}, \mu_{0}, \ldots, \mu_{N-2}\right) \\
& \quad+\beta\left(x_{0}, \mu_{0}, \ldots, \mu_{N-2}\right)\left(\begin{array}{c}
g_{N-1}\left(1, \mu_{N-1}(1)\right)+\sum_{j=1}^{n} P_{N-1}^{1 j}\left(\mu_{N-1}(1)\right) G_{N}(j) \\
g_{N-1}\left(2, \mu_{N-1}(2)\right)+\sum_{j=1}^{n} P_{N-1}^{2 j}\left(\mu_{N-1}(2)\right) G_{N}(j) \\
\vdots \\
g_{N-1}\left(n, \mu_{N-1}(n)\right)+\sum_{j=1}^{n} P_{N-1}^{n j}\left(\mu_{N-1}(n)\right) G_{N}(j)
\end{array}\right)
\end{aligned}
$$

- Minimizing over μ_{N-1} results in term-by-term minimization:

$$
J_{N-1}^{*}=\left(\begin{array}{c}
\min _{u_{N-1}} g_{N-1}\left(1, u_{N-1}\right)+\sum_{j=1}^{n} P_{N-1}^{1 j}\left(u_{N-1}\right) G_{N}(j) \\
\min _{u_{N-1}} g_{N-1}\left(2, u_{N-1}\right)+\sum_{j=1}^{n} P_{N-1}^{2 j}\left(u_{N-1}\right) G_{N}(j) \\
\vdots \\
\min _{u_{N-1}} g_{N-1}\left(n, u_{N-1}\right)+\sum_{j=1}^{n} P_{N-1}^{n j}\left(u_{N-1}\right) G_{N}(j)
\end{array}\right)
$$

Value Iteration Revisited, cont

- μ_{N-1} eliminated (replaced by J_{N-1}^{*}):

$$
\begin{aligned}
& \min _{\mu_{0}, \ldots, \mu_{N-1}} \mathrm{E}\left[J\left(x_{0}, \ldots, x_{N-1} ; \pi\right) \mid x_{0}\right]= \\
& \min _{\mu_{0}, \ldots, \mu_{N-2}} \alpha\left(x_{0}, \mu_{0}, \ldots, \mu_{N-2}\right)+\beta\left(x_{0}, \mu_{0}, \ldots, \mu_{N-2}\right) J_{N-1}^{*}
\end{aligned}
$$

- Repeat analysis, but now J_{N-1}^{*} plays role of G_{N} :

$$
\begin{aligned}
& \min _{\mu_{0}, \ldots, \mu_{N-1}} \mathrm{E}\left[J\left(x_{0}, \ldots, x_{N-1} ; \pi\right) \mid x_{0}\right]= \\
& \quad \min _{\mu_{0}, \ldots, \mu_{N-2}} \alpha\left(x_{0}, \mu_{0}, \ldots, \mu_{N-3}\right)+\beta\left(x_{0}, \mu_{0}, \ldots, \mu_{N-3}\right)\left(G_{N-2}\left(\mu_{N-2}\right)+P_{N-2}\left(\mu_{N-2}\right) J_{N-1}^{*}\right)
\end{aligned}
$$

- Minimization over μ_{N-2} produces J_{N-2}^{*} as function of J_{N-1}^{*}
- Repeated application is same as value iteration:

$$
\begin{aligned}
J_{k}\left(x_{k}\right) & =\min _{u_{k}} \mathrm{E}\left[g_{k}\left(x_{k}, u_{k}\right)+J_{k+1}\left(f_{k}\left(x_{k}, u_{k}, w_{k}\right)\right)\right] \\
& =\min _{u_{k}} g_{k}\left(x_{k}, u_{k}\right)+\sum_{j=1}^{n} J_{k+1}(j) \mathrm{P}\left[x_{k+1}=j \mid x_{k}, u_{k}\right]
\end{aligned}
$$

