Dynamic Programming Lecture \#11

Outline:

- Imperfect Information Set-up
- DP on Probabilities
- Example: Machine repair

Imperfect Information

- Standard problem:

$$
\begin{gathered}
x_{k+1}=f_{k}\left(x_{k}, u_{k}, w_{k}\right) \\
\min _{\pi} E\left\{g_{N}\left(x_{N}\right)+\sum_{k=0}^{N-1} g_{k}\left(x_{k}, \mu_{k}\left(x_{k}\right), w_{k}\right)\right\}
\end{gathered}
$$

- What if we do not have access to x_{k} ?
- Initial condition: x_{0} random.
- Observations:

$$
\begin{gathered}
z_{0}=h_{0}\left(x_{0}, v_{0}\right) \\
z_{k}=h_{k}\left(x_{k}, u_{k-1}, v_{k}\right)
\end{gathered}
$$

- Measurement disturbance (noise) v_{k} is random, but can depend on $\left(x_{k-1}, u_{k-1}, w_{k-1}\right)$
- Implication: Cannot implement $\mu_{k}\left(x_{k}\right)$ because we never know x_{k}.

Examples

- Motivation \#1: Partial measurements

$$
y=C x_{k}+v_{k}
$$

Examples: Position vs Velocity measurements or distributed sensors

- Motivation \#2: Artificial states
- Revisit LQ:

$$
x^{+}=A x+B u+L w
$$

- Disturbance model: "white" vs "colored" (correlated with past).
- Represent w_{k} as

$$
\begin{gathered}
w_{k}=H \xi_{k} \\
\xi_{k+1}=F \xi_{k}+G \tilde{w}_{k}
\end{gathered}
$$

where \tilde{w}_{k} independent.

- New dynamics:

$$
\binom{x}{\xi}^{+}=\left(\begin{array}{cc}
A & L H \\
0 & F
\end{array}\right)\binom{x}{\xi}+\binom{B}{0} u+\binom{0}{G} w
$$

- Cannot measure ξ...it is part of (artificial) model.

Information Formulation

- Information at time k :

$$
\begin{gathered}
I_{0}=z_{0} \\
I_{k}=\left(z_{0}, z_{1}, \ldots, z_{k}, u_{0}, \ldots, u_{k-1}\right)
\end{gathered}
$$

- Information based policy:

$$
\left.\mu_{k}\left(I_{k}\right) \quad \text { (not function of } x_{k}\right)
$$

- Minimization:

$$
E_{x_{0}, w_{\{0, \ldots, N-1\}}, v_{\{0, \ldots, N-1\}}}\left\{g_{N}\left(x_{N}\right)+\sum_{k=0}^{N-1} g_{k}\left(x_{k}, \mu_{k}\left(I_{k}\right), w_{k}\right)\right\}
$$

- Fact: Can formulate DP on an information based system. We will pursue instead a "sufficient statistic".

Probability Propagation

- Define X_{k} : distribution function for x_{k} given information I_{k}.
- Interpretation: "Beliefs" on x_{k}. Instead of value of x_{k}, we have probabilities on values of x_{k}.
- FACT: For appropriately defined Φ_{k},

$$
X_{k+1}=\Phi_{k}\left(X_{k}, u_{k}, z_{k+1}\right)
$$

- Tomorrow's beliefs are a function of:
- Today's beliefs
- Today's control
- Tomorrow'smeasurement
- All information encoded in X...i.e., a new "state"
- Recall previous discussion on (uncontrolled) hidden Markov models

Computation of Φ

- We have reduced partial information to full state information, but on system:

$$
X_{k+1}=\Phi_{k}\left(X_{k}, u_{k}, z_{k+1}\right)
$$

- New state: X_{k}
- Control: u_{k}
- New disturbance: z_{k+1}, i.e., tomorrow's measurement
- Assume "given" X_{k} and u_{k} throughout
- How to derive Φ_{k} ?

$$
\begin{aligned}
P\left(x_{k+1}=s^{*} \mid z_{k+1}=z^{*}\right) & =\frac{P\left(x_{k+1}=s^{*} \& z_{k+1}=z^{*}\right)}{P\left(z_{k+1}=z^{*}\right)} \\
& =\frac{P\left(x_{k+1}=s^{*} \& z_{k+1}=z^{*}\right)}{\sum_{j} P\left(z_{k+1}=z^{*} \& x_{k+1}=j\right)}
\end{aligned}
$$

- By total probability:

$$
P\left(x_{k+1}=s^{*} \mid z_{k+1}=z^{*}\right)=\frac{\sum_{i} P\left(x_{k+1}=s^{*} \& z_{k+1}=z^{*} \mid x_{i}=i\right) P\left(x_{k}=i\right)}{\sum_{i} P\left(z_{k+1}=z^{*} \mid x_{k+1}=j\right) P\left(x_{k}=i\right)}
$$

- Allows for simpler computations

Example: Propagation of X

$$
\begin{gathered}
x_{k+1}=x_{k}+1+w_{k}, \quad w_{k} \in\{-1,0,1\} \\
z_{k+1}=x_{k+1}+v_{k}, \quad v_{k} \in\{-1,0,1\}
\end{gathered}
$$

- Suppose we know $x_{k}=0$, i.e.,

$$
P\left(x_{k}=0\right)=1 \simeq X_{k}
$$

- Main issue: What is X_{k+1} (given $I_{k+1}=I_{k} \cup z_{k+1}$)?

$$
P\left(x_{k+1}=x^{*} \mid z_{k+1}=1\right)=\frac{P\left(x_{k+1}=x^{*} \& z_{k+1}=1\right)}{P\left(z_{k+1}=1\right)}
$$

- All possibilities:

	$w_{k}=-1$	0	1
$v_{k+1}=-1$	$z_{k+1}=-1$	0	1
0	0	1	2
1	1	2	3

	$w_{k}=-1$	0	1
$v_{k+1}=-1$	$x_{k+1}=0$	1	2
0	0	1	2
1	0	1	2

- Result: $X_{k+1}=\{0,1,2\}$ with probability $\{1 / 3,1 / 3,1 / 3\}$

Example, cont (2)

	$w_{k}=-1$	0	1
$v_{k+1}=-1$	$z_{k+1}=-1$	0	1
0	0	1	2
1	1	2	3

	$w_{k}=-1$	0	1
$v_{k+1}=-1$	$x_{k+1}=0$	1	2
0	0	1	2
1	0	1	2

- What is $P\left(x_{k+1}=x^{*} \mid z_{k+1}=2\right)$?
- Result: $X_{k+1}=\{0,1,2\}$ with probability $\{0,1 / 2,1 / 2\}$
- What is $P\left(x_{k+1}=x^{*} \mid z_{k+1}=3\right)$?
- Result: $X_{k+1}=\{0,1,2\}$ with probability $\{0,0,1\}$

DP on X

- Define

$$
G_{N}\left(X_{N}\right)=E\left\{g_{N}\left(x_{N}\right) \mid I_{N}\right\}
$$

i.e., expected terminal penalty given all information to date.

- Define

$$
G_{k}\left(X_{k}, u_{k}\right)=E\left\{g_{k}\left(x_{k}, u_{k}, w_{k}\right)\right\}
$$

- System dynamics:

$$
X_{k+1}=\Phi_{k}\left(X_{k}, u_{k}, z_{k+1}\right)
$$

where probabilities of z_{k+1} depend on $\left(X_{k}, u_{k}\right)$

- Initialize

$$
J_{N}\left(X_{N}\right)=G_{N}\left(X_{N}\right)
$$

- Proceed as usual...

$$
J_{k}\left(X_{k}\right)=\min _{u_{k}} E\left\{G_{k}\left(X_{k}, u_{k}\right)+J_{k+1}\left(\Phi_{k}\left(X_{k}, u_{k}, z_{k+1}\right)\right)\right\}
$$

- "Looks like" standard DP...but acting on belief dynamics.

Machine Repair

- Machine state: $=\left\{\begin{array}{ll}1 & \text { up } \\ 0 & \text { down }\end{array}\right.$.
- Control actions: $= \begin{cases}C & \text { continue (do nothing) } \\ S & \text { stop \& repair if needed }\end{cases}$
- System probabilities: If up, stay up with probability $2 / 3 \&$ fail with probability $1 / 3$.
- Measurement: Correct diagnosis with probability $3 / 4 \&$ false diagnosis with probability $1 / 4$
- Stage costs:

$$
g(x, u)= \begin{cases}2 & \text { continue with machine down } \\ 0 & \text { continue with machine up } \\ 1 & \text { stop \& repair }\end{cases}
$$

- Let $p_{k}=$ probability machine is down at time k given information up to time k. (Then $\left(1-p_{k}\right)$ is probability machine is up at time k.)
- What is p_{1} as a function of $p_{0}, u_{0}, \& z_{1}$? i.e., derive

$$
X_{1}=\Phi\left(X_{0}, u_{0}, z_{1}\right)
$$

Machine Repair, cont (2)

- In each case, compute

$$
\frac{P\left(\text { down \& } u_{0}, z_{1}\right)}{P\left(u_{0}, z_{1}\right)}
$$

- $u_{0}=S \& z_{1}=U$:

$$
\left\{\begin{array}{ll}
(1 / 3)(1 / 4) & (\text { fail })(\text { false }) \\
(2 / 3)(3 / 4) & (\text { no fail })(\text { true })
\end{array} \Rightarrow \frac{1 / 12}{1 / 12+6 / 12}=1 / 7\right.
$$

- $u_{0}=S \& z_{1}=D$:

$$
\left\{\begin{array}{ll}
(1 / 3)(3 / 4) & (\text { fail }) \text { (true) } \\
(2 / 3)(1 / 4) & (\text { no fail })(\text { false })
\end{array} \Rightarrow \frac{1 / 4}{1 / 4+2 / 12}=3 / 5\right.
$$

- $u_{0}=C \& z_{1}=U$:

$$
\left\{\begin{array}{ll}
\begin{array}{l}
\left(1-p_{0}\right)(1 / 3)(1 / 4) \\
p_{0}(1 / 4)
\end{array} & (\text { was up })(\text { fail })(\text { false }) \\
\left(1-p_{0}\right)(2 / 3)(3 / 4) & \text { (was down } \text { (fas up)(no fail)(true) }
\end{array} \Rightarrow \frac{1+2 p_{0}}{7-4 p_{0}}=\frac{1+2}{1+2+3}\right.
$$

- $u_{0}=C \& z_{1}=D:$

$$
\left\{\begin{array}{ll}
\left(1-p_{0}\right)(1 / 3)(3 / 4) & \text { (was up)(fail)(true) } \\
\left(1-p_{0}\right)(2 / 3)(1 / 4) & \text { (was up)(no fail)(false) } \\
p_{0}(3 / 4) & \text { (was down)(true) }
\end{array} \Rightarrow \frac{3+6 p_{0}}{5+4 p_{0}}=\frac{1+3}{1+2+3}\right.
$$

- In general: $p^{+}=\Phi\left(p, u, z^{+}\right)$

