Dynamic Programming Lecture \#12

Outline:

- Example: Machine repair
- Example: Hypothesis testing

Set-Up

- System:

$$
x_{k+1}=f_{k}\left(x_{k}, u_{k}, w_{k}\right)
$$

- Observations:

$$
\begin{gathered}
z_{0}=h_{0}\left(x_{0}, v_{0}\right) \\
z_{k}=h_{k}\left(x_{k}, u_{k-1}, v_{k}\right)
\end{gathered}
$$

- Initial condition is random.
- Measurement disturbance (noise) v_{k} is random, but can depend on $\left(x_{k-1}, u_{k-1}, w_{k-1}\right)$.
- Solution: Apply DP to:

$$
X_{k+1}=\Phi_{k}\left(X_{k}, u_{k}, z_{k+1}\right)
$$

Machine Repair

- Machine state: $=\left\{\begin{array}{ll}1 & \text { up } \\ 0 & \text { down }\end{array}\right.$.
- Disturbance: Machine failure.
- Control actions: $=\left\{\begin{array}{ll}C & \text { continue (do nothing) } \\ S & \text { stop \& repair if needed }\end{array}\right.$.
- System probabilities: If up, stay up with probability $2 / 3$ \& fail with probability $1 / 3$.
- Measurement: State of machine.
- Measurement noise: Correct diagnosis with probability $3 / 4 \&$ false diagnosis with probability $1 / 4$
- Stage costs:

$$
g(x, u)= \begin{cases}2 & \text { continue with machine down } \\ 0 & \text { continue with machine up } \\ 1 & \text { stop \& repair }\end{cases}
$$

- Let $p_{k}=$ probability machine is down at time k given information up to time k. (Then $\left(1-p_{k}\right)$ is probability machine is up at time k.)
- What is p_{1} as a function of $p_{0}, u_{0}, \& z_{1}$? i.e., derive

$$
X_{1}=\Phi\left(X_{0}, u_{0}, z_{1}\right)
$$

Machine Repair, cont (2)

- In each case, compute

$$
\frac{P\left(\text { down \& } u_{0}, z_{1}\right)}{P\left(u_{0}, z_{1}\right)}
$$

- $u_{0}=S \& z_{1}=U$:

$$
\left\{\begin{array}{ll}
(1 / 3)(1 / 4) & (\text { fail })(\text { false }) \\
(2 / 3)(3 / 4) & (\text { no fail })(\text { true })
\end{array} \Rightarrow \frac{1 / 12}{1 / 12+6 / 12}=1 / 7\right.
$$

- $u_{0}=S \& z_{1}=D$:

$$
\left\{\begin{array}{ll}
(1 / 3)(3 / 4) & (\text { fail }) \text { (true) } \\
(2 / 3)(1 / 4) & (\text { no fail })(\text { false })
\end{array} \Rightarrow \frac{1 / 4}{1 / 4+2 / 12}=3 / 5\right.
$$

- $u_{0}=C \& z_{1}=U$:

$$
\left\{\begin{array}{ll}
\begin{array}{l}
\left(1-p_{0}\right)(1 / 3)(1 / 4) \\
p_{0}(1 / 4)
\end{array} & (\text { was up })(\text { fail })(\text { false }) \\
\left(1-p_{0}\right)(2 / 3)(3 / 4) & \text { (was down } \text { (fas up)(no fail)(true) }
\end{array} \Rightarrow \frac{1+2 p_{0}}{7-4 p_{0}}=\frac{1+2}{1+2+3}\right.
$$

- $u_{0}=C \& z_{1}=D:$

$$
\left\{\begin{array}{ll}
\left(1-p_{0}\right)(1 / 3)(3 / 4) & \text { (was up)(fail)(true) } \\
\left(1-p_{0}\right)(2 / 3)(1 / 4) & \text { (was up)(no fail)(false) } \\
p_{0}(3 / 4) & \text { (was down)(true) }
\end{array} \Rightarrow \frac{3+6 p_{0}}{5+4 p_{0}}=\frac{1+3}{1+2+3}\right.
$$

- In general: $p^{+}=\Phi\left(p, u, z^{+}\right)$

Machine Repair, cont (3)

- Now consider a horizon $[0,2]$ with no terminal cost.

$$
\begin{gathered}
J_{2}\left(X_{2}\right)=0 \\
J_{1}\left(X_{1}\right)=\min _{u} E\{g(x, u)\}= \begin{cases}2 p_{1}+0 *\left(1-p_{1}\right)=2 p_{1} & \text { for } u_{1}=C \\
1 & \text { for } u_{1}=S\end{cases} \\
\mu_{1}\left(p_{1}\right)= \begin{cases}C & \text { if } 2 p_{1}<1 \\
S & \text { otherwise }\end{cases} \\
J_{1}\left(p_{1}\right)=\min \left\{2 p_{1}, 1\right\}
\end{gathered} J_{0}\left(p_{0}\right)=\min _{u} E\left\{g(x, u)+J_{1}\left(\Phi\left(X_{0}, u_{o}, z_{1}\right)\right)\right\},
$$

- Case $u_{0}=S$:

$$
\begin{aligned}
J_{0}\left(p_{0}\right) & =1+E\left\{J_{1}\left(\Phi\left(X_{0}, S, z_{1}\right)\right)\right\} \\
& =1+J_{1}(1 / 7) P\left(z_{1}=U\right)+J_{1}(3 / 5) P\left(z_{1}=D\right) \\
& =1+J_{1}(1 / 7)(7 / 12)+J_{1}(3 / 5)(5 / 12) \\
& =1+(2 * 1 / 7)(7 / 12)+1(5 / 12)
\end{aligned}
$$

- Case $u_{0}=C$:

$$
\begin{aligned}
J_{0}\left(p_{0}\right) & =0 *\left(1-p_{0}\right)+2 p_{0}+J_{1}\left(\frac{1+2 p_{0}}{7-4 p_{0}}\right) P\left(z_{1}=U\right)+J_{1}\left(\frac{3+6 p_{0}}{5+4 p_{0}}\right) P\left(z_{1}=D\right) \\
& =\text { etc }
\end{aligned}
$$

- Final step: Compare $J_{0}\left(p_{0}\right)$ for $u_{0}=C$ vs $u_{0}=S$.

Sequential Hypothesis Testing

- Set-up: Measure $\left\{z_{0}, z_{1}, \ldots, z_{N-1}\right\}$, i.e., $z_{i} \in Z$.
- Objective: Are z 's generated by distribution f_{0} or f_{1} ?
- Decision: At time k
- Stop observing and conclude f_{0} or f_{1}.
- Take and additional observation at a cost C.
- Losses: If we choose to stop
- Cost $=L_{0}$ if f_{0} is chosen and is wrong.
- Cost $=L_{1}$ if f_{1} is chosen and is wrong.
- State equations: $x_{k+1}=x_{k}$, where state is either 0 or 1 .
- Initial condition: $P\left(x_{0}=0\right)=p$

Hypothesis Testing cont, (2)

- Notation: Let $p_{k}=P\left(x_{k}=0 \mid I_{k}\right)$.
- $p_{0}=$?:

$$
\begin{aligned}
P\left(x_{0}=0 \mid z_{0}=z^{*}\right) & =\frac{P\left(x_{0}=0 \& z_{0}=z^{*}\right)}{P\left(z_{0}=z^{*}\right)} \\
& =\frac{p f_{0}\left(z^{*}\right)}{p f_{0}\left(z^{*}\right)+(1-p) f_{1}\left(z^{*}\right)}
\end{aligned}
$$

So

$$
p_{0}=\frac{p f_{0}\left(z_{0}\right)}{p f_{0}\left(z_{0}\right)+(1-p) f_{1}\left(z_{0}\right)}
$$

- $p_{1}=$?: Same analysis

$$
p_{k+1}=\frac{p_{k} f_{0}\left(z_{k+1}\right)}{p_{k} f_{0}\left(z_{k+1}\right)+\left(1-p_{k}\right) f_{1}\left(z_{k+1}\right)}
$$

Probability Propagation Illustration

- Suppose

$$
\begin{gathered}
Z=\{A, B\} \\
f_{0} \simeq\{0.99,0.01\} \\
f_{1} \simeq\{0.01,0.99\}
\end{gathered}
$$

- Suppose a priori $p=1 / 3$:
- Case measure $z=A$:

$$
p_{0}^{+}=\frac{(1 / 3)(0.99)}{(1 / 3)(0.99)+(2 / 3)(0.01)}=0.98
$$

- Case measure $z=B$:

$$
p_{0}^{+}=\frac{(1 / 3)(0.01)}{(1 / 3)(0.01)+(2 / 3)(0.99)}=0.005
$$

Hypothesis Testing, cont (3)

- Now apply DP

$$
J_{N}\left(p_{N}\right)=\min _{\text {choose } 0 \text { or } 1} E\{\text { cost of choice }\}
$$

- Choose 0: $L_{0}\left(1-P_{N}\right)$
- Chose 1: $L_{1} P_{N}$
- $J_{N}\left(p_{N}\right)=\min \left\{L_{0}\left(1-P_{N}\right), L_{1} P_{N}\right\}$

- If $L_{0} \gg L_{1} \Rightarrow$ always choose 1 unless VERY confident.

Hypothesis Testing, cont (4)

- DP recursions:

$$
J_{k}\left(p_{k}\right)=\min \left\{\begin{array}{l}
\left(1-p_{k}\right) L_{0} \\
p_{k} L_{1} \\
C+A_{k}\left(p_{k}\right)
\end{array}\right.
$$

where

$$
\begin{aligned}
A_{k}\left(p_{k}\right)= & E\left\{J_{k+1}\left(\frac{p_{k} f_{0}\left(z_{k+1}\right)}{p_{k} f_{0}\left(z_{k+1}\right)+\left(1-p_{k}\right) f_{1}\left(z_{k+1}\right)}\right)\right\} \\
= & \left(\sum_{i} f_{0}\left(z^{i}\right) J_{k+1}\left(\frac{p f_{0}\left(z^{i}\right)}{p f_{0}\left(z^{i}\right)+(1-p) f_{1}\left(z^{i}\right)}\right)\right) p \\
& +\left(\sum_{i} f_{1}\left(z^{i}\right) J_{k+1}\left(\frac{p f_{0}\left(z^{i}\right)}{p f_{0}\left(z^{i}\right)+(1-p) f_{1}\left(z^{i}\right)}\right)\right)(1-p) \\
= & \sum_{i}\left(p f_{0}\left(z^{i}\right)+(1-p) f_{1}\left(z^{i}\right)\right) J_{k+1}\left(\frac{p f_{0}\left(z^{i}\right)}{p f_{0}\left(z^{i}\right)+(1-p) f_{1}\left(z^{i}\right)}\right)
\end{aligned}
$$

Hypothesis Testing, cont (5)

- Facts:
$-A_{k}(0)=A_{k}(1)=0$.
- $A_{k-1}(p) \leq A_{k}(p)$ by monotonicity.
- $A_{k}(p)$ concave

- Structure of optimal thresholds:
- Pick 1 if in left region.
- Pick 0 if in right region.
- Pick C if in middle.
- Thresholds converge as horizon length approaches infinity.

