Outline:

- Example: Machine repair
- Example: Hypothesis testing

• System:

$$x_{k+1} = f_k(x_k, u_k, w_k)$$

• Observations:

$$z_0 = h_0(x_0, v_0)$$

 $z_k = h_k(x_k, u_{k-1}, v_k)$

- Initial condition is random.
- Measurement disturbance (noise) v_k is random, but can depend on $(x_{k-1}, u_{k-1}, w_{k-1})$.
- Solution: Apply DP to:

$$X_{k+1} = \Phi_k(X_k, u_k, z_{k+1})$$

- Machine state: = $\begin{cases} 1 & \text{up} \\ 0 & \text{down} \end{cases}$.
- Disturbance: Machine failure.
- Control actions: = $\begin{cases} C & \text{continue (do nothing)} \\ S & \text{stop & repair if needed} \end{cases}$
- System probabilities: If up, stay up with probability 2/3 & fail with probability 1/3.
- Measurement: State of machine.
- \bullet Measurement noise: Correct diagnosis with probability 3/4 & false diagnosis with probability 1/4
- Stage costs:

 $g(x,u) = \begin{cases} 2 & \text{continue with machine down} \\ 0 & \text{continue with machine up} \\ 1 & \text{stop \& repair} \end{cases}$

- Let $p_k =$ probability machine is down at time k given information up to time k. (Then $(1 p_k)$ is probability machine is up at time k.)
- What is p_1 as a function of p_0 , u_0 , & z_1 ? i.e., derive

$$X_1 = \Phi(X_0, u_0, z_1)$$

• In each case, compute

$$\frac{P(\text{down \& } u_0, z_1)}{P(u_0, z_1)}$$

• $u_0 = S \& z_1 = U$:

$$\begin{cases} (1/3)(1/4) & \text{(fail)(false)} \\ (2/3)(3/4) & \text{(no fail)(true)} \end{cases} \Rightarrow \frac{1/12}{1/12 + 6/12} = 1/7$$

•
$$u_0 = S \& z_1 = D$$
:

$$\begin{cases} (1/3)(3/4) & \text{(fail)(true)} \\ (2/3)(1/4) & \text{(no fail)(false)} \end{cases} \Rightarrow \frac{1/4}{1/4 + 2/12} = 3/5$$

• $u_0 = C \& z_1 = U$:

$$\begin{cases} (1-p_0)(1/3)(1/4) & \text{(was up)(fail)(false)} \\ p_0(1/4) & \text{(was down)(false)} \\ (1-p_0)(2/3)(3/4) & \text{(was up)(no fail)(true)} \end{cases} \Rightarrow \frac{1+2p_0}{7-4p_0} = \frac{1+2}{1+2+3}$$

• $u_0 = C \& z_1 = D$:

$$\begin{cases} (1-p_0)(1/3)(3/4) & \text{(was up)(fail)(true)} \\ (1-p_0)(2/3)(1/4) & \text{(was up)(no fail)(false)} \Rightarrow \frac{3+6p_0}{5+4p_0} = \frac{1+3}{1+2+3} \\ p_0(3/4) & \text{(was down)(true)} \end{cases}$$

• In general: $p^+ = \Phi(p, u, z^+)$

 \bullet Now consider a horizon [0,2] with no terminal cost.

$$J_2(X_2) = 0$$

$$J_1(X_1) = \min_u E\{g(x, u)\} = \begin{cases} 2p_1 + 0 * (1 - p_1) = 2p_1 & \text{for } u_1 = C\\ 1 & \text{for } u_1 = S \end{cases}$$
$$\mu_1(p_1) = \begin{cases} C & \text{if } 2p_1 < 1\\ S & \text{otherwise} \end{cases}$$
$$J_1(p_1) = \min\{2p_1, 1\}$$

$$J_0(p_0) = \min_u E\left\{g(x, u) + J_1(\Phi(X_0, u_o, z_1))\right\}$$

- Case $u_0 = S$:

$$J_0(p_0) = 1 + E \{J_1(\Phi(X_0, S, z_1))\}$$

= 1 + J_1(1/7)P(z_1 = U) + J_1(3/5)P(z_1 = D)
= 1 + J_1(1/7)(7/12) + J_1(3/5)(5/12)
= 1 + (2 * 1/7)(7/12) + 1(5/12)

- Case $u_0 = C$:

$$J_0(p_0) = 0 * (1 - p_0) + 2p_0 + J_1(\frac{1 + 2p_0}{7 - 4p_0})P(z_1 = U) + J_1(\frac{3 + 6p_0}{5 + 4p_0})P(z_1 = D)$$

= etc

• Final step: Compare $J_0(p_0)$ for $u_0 = C$ vs $u_0 = S$.

- Set-up: Measure $\{z_0, z_1, \ldots, z_{N-1}\}$, i.e., $z_i \in Z$.
- Objective: Are z's generated by distribution f_0 or f_1 ?
- Decision: At time \boldsymbol{k}
 - Stop observing and conclude f_0 or f_1 .
 - Take and additional observation at a cost C.
- Losses: If we choose to stop
 - Cost $= L_0$ if f_0 is chosen and is wrong.
 - Cost $= L_1$ if f_1 is chosen and is wrong.
- State equations: $x_{k+1} = x_k$, where state is either 0 or 1.
- Initial condition: $P(x_0 = 0) = p$

- Notation: Let $p_k = P(x_k = 0|I_k)$.
- $p_0 = ?:$

$$P(x_0 = 0 | z_0 = z^*) = \frac{P(x_0 = 0 \& z_0 = z^*)}{P(z_0 = z^*)}$$
$$= \frac{pf_0(z^*)}{pf_0(z^*) + (1 - p)f_1(z^*)}$$

So

$$p_0 = \frac{pf_0(z_0)}{pf_0(z_0) + (1-p)f_1(z_0)}$$

• $p_1 = ?:$ Same analysis

$$p_{k+1} = \frac{p_k f_0(z_{k+1})}{p_k f_0(z_{k+1}) + (1 - p_k) f_1(z_{k+1})}$$

• Suppose

$$Z = \{A, B\}$$

$$f_0 \simeq \{0.99, 0.01\}$$

$$f_1 \simeq \{0.01, 0.99\}$$

• Suppose a priori p = 1/3:

- Case measure z = A:

$$p_0^+ = \frac{(1/3)(0.99)}{(1/3)(0.99) + (2/3)(0.01)} = 0.98$$

- Case measure z = B:

$$p_0^+ = \frac{(1/3)(0.01)}{(1/3)(0.01) + (2/3)(0.99)} = 0.005$$

• Now apply DP

 $J_N(p_N) = \min_{\text{choose 0 or 1}} E \{\text{cost of choice}\}$

- Choose 0: $L_0(1 P_N)$
- Chose 1: L_1P_N
- $J_N(p_N) = \min \{L_0(1 P_N), L_1 P_N\}$

• If $L_0 \gg L_1 \Rightarrow$ always choose 1 unless VERY confident.

• DP recursions:

$$J_k(p_k) = \min \begin{cases} (1 - p_k)L_0\\ p_k L_1\\ C + A_k(p_k) \end{cases}$$

where

$$\begin{aligned} A_k(p_k) &= E\left\{J_{k+1}\left(\frac{p_k f_0(z_{k+1})}{p_k f_0(z_{k+1}) + (1-p_k) f_1(z_{k+1})}\right)\right\} \\ &= \left(\sum_i f_0(z^i) J_{k+1}\left(\frac{p f_0(z^i)}{p f_0(z^i) + (1-p) f_1(z^i)}\right)\right) p \\ &+ \left(\sum_i f_1(z^i) J_{k+1}\left(\frac{p f_0(z^i)}{p f_0(z^i) + (1-p) f_1(z^i)}\right)\right) (1-p) \end{aligned}$$
$$\begin{aligned} &= \sum_i \left(p f_0(z^i) + (1-p) f_1(z^i)\right) J_{k+1}\left(\frac{p f_0(z^i)}{p f_0(z^i) + (1-p) f_1(z^i)}\right) \end{aligned}$$

• Facts:

- $-A_k(0) = A_k(1) = 0.$ - $A_{k-1}(p) \le A_k(p)$ by monotonicity.
- $-A_k(p)$ concave

- Structure of optimal thresholds:
 - Pick 1 if in left region.
 - Pick 0 if in right region.
 - Pick C if in middle.
 - Thresholds converge as horizon length approaches infinity.