
Dynamic Programming Lecture #13

Outline:

• Infinite Horizon Preview

• Stochastic Shortest Path

• Bellman equation



Infinite Horizon

• System:

xk+1 = fk(xk, uk, wk)

• New cost:

min E


∞∑

k=0
gk(xk, uk, wk)


• Why deal with ∞ horizon?

– Know game is finite, but don’t know # stages.

– ∞ horizon set-up may be simplifying!

• Important assumption: Make all terms stage-independent:

x+ = f(x, u, w)

min E


∞∑

k=0
g(xk, uk, wk)





Problems with Infinity

• Example:

x+ = Ax + Bu + Lw

min
∞∑

k=0
xTQx + uTu

Issue: Cost is infinite!

• Ways around ∞:

– Stochastic shortest path

cost = E


∞∑

k=0
g(xk, uk, wk)


but we will terminate.

– Discounted cost:

cost = E


∞∑

k=0
αkg(xk, uk, wk)


= E

{
g(x0, u0, w0) + αg(x1, u1, w1) + α2g(x2, u2, w2) + . . .

}
with 0 < α < 1⇒ far future doesn’t matter.

– Average cost:

cost = lim
N→∞

1

N
E


∞∑

k=0
g(xk, uk, wk)


now near future doesn’t matter.

– Specialized analysis and monotonicity.



Expectations

• Policy is stage-independent

{µ0, µ1, µ2, . . .} vs {µ, µ, µ, . . .}

Why whould 1,000,000 stages to go differ from 1,000,001 stages to go?

• DP recursions (new notation):

Jk+1 = min
u

E {g(x, u, w) + Jk(f(x, u, w))}

Before:
J0 ← J1 . . . JN−1 ← JN

Now:
J∞(?)← . . . J2 ← J1 ← J0

Expect Jk → J∗ for any J0.

• New Bellman equation:

J∗(x) = min
u

E {g(x, u, w) + J∗(f(x, u, w))}

i.e., a “fixed point” of DP iterations.



Set-up: Controlled Finite State Markov Chains

• State-space: X = {1, 2, . . . , n}.

• Controls: For i ∈ X, must use u ∈ U(i), where U(i) is finite set.

• Transistion probabilities: pij(u) or P (u).

• Notation: π = {µ0, µ1, µ2, . . .}.

• Infinite horizon cost:

min
π

lim
N→∞

E


N−1∑
k=0

g(xk, µk(xk))|x0 = i


• Note: We do not write

∑∞
0

1. Commit to π.

2. Take limit.



Stochastic Shortest Path

• Assume a cost free termination state: t

– ptt(u) = 1

– pti(u) = 0

– g(t, u) = 0

• Assume: There exists an m s.t. for any π:

ρπ = max
i=1,...,n

Pr ( xm 6= t|xo = i, π ) < 1

i.e., after m-steps, there is a non-zero probability that we will terminate.

• Fact: Since U(i) is always a finite set, there is a finite number of policies over [0, m−1],
so

max
π

ρπ = ρ < 1

• Assumption assures that probability of continuation decay exponentially.

– What is Pr ( xm 6= t & x2m 6= t )?

Pr(x2m 6= t|xm 6= t)P (xm 6= t) ≤ ρ2

– Similarly Pr ( xkm 6= t ) ≤ ρk.



Bounding the Cost

• Let Jπ(i) = cost of policy π.

• Set

G = max
i=1,...,n
u∈U(i)

|g(i, u)|

– [0, m− 1] : E {∑ g} ≤ mG

– [m, 2m− 1] : E {∑ g} ≤ mGPr(xm 6= t) ≤ ρmG

– [2m, 3m− 1] : E {∑ g} ≤ ρ2mG

Total cost bound:

|Jπ(i)| ≤ mG(1 + ρ + ρ2 + . . .) = mG
1

1− ρ



Main Result: Value Iteration

• Note: Suppose x = i and x+ = j.

Ej {F (j, u)|i} =
n∑

j=1
pij(u)f(j, u)

• Theorem: For any starting J0(1), . . . , J0(n), the value iteration

Jk+1(i) = min
u∈U(i)

( g(i, u) +
∑n

j=1 pij(u)Jk(j) )

converges to the optimal cost J∗(i).

• Furthermore, J∗(i) satisfies the Bellman equation:

J∗(i) = min
u∈U(i)

( g(i, u) +
∑n

j=1 pij(u)J∗(j) )

i.e., J∗(·) is a fixed-point of value iteration.



Proof

• Divide time [0, N − 1] into intervals:

[0, m− 1], [m, 2m− 1], . . . , [(K − 1)m, Km− 1], [Km, N − 1]

• Cost of π:

Jπ(x0) = lim
N→∞

E


N−1∑
k=0

g(xk, µk(xk))


= E


Km−1∑
k=0

g(xk, µk(xk))

 + lim
N→∞

E


N−1∑

k=Km

g(xk, µk(xk))


• Second term bound:

∣∣∣∣∣∣E


N−1∑
k=Km

g(xk, µk(xk))


∣∣∣∣∣∣ ≤ mG

ρK

1− ρ

• Consider using J0(·) as start of value iterations (terminal penalty). The diminishing role
can be seen by:

|E {J0(xKm)}| ≤ ρK max
i
|J0(i)|



Proof, cont (2)

• Approximate value of Jπ(x0):

Jπ(x0) = E


Km−1∑
k=0

g(xk, µk(xk))

±mG
ρK

1− ρ
+E {J0(xKm)} − E {J0(xKm)}

= E

J0(xKm) +
Km−1∑
k=0

g(xk, µk(xk))


±mG

ρK

1− ρ
± ρK max

i
|J0(i)|

• Minimize both sides over (different) π:

J∗(x0) = JKm(x0)±mG
ρK

1− ρ
± ρK max

i
|J0(i)|

so as K →∞:

JKm(x0)→ J∗(x0)

• Could repeat analysis using any intervals of width [0, m + q − 1] to get desired result.



Proof, cont (3)

• Now to show J∗(·) satisfies Bellman equation:

Jk+1(i) = min
u∈U(i)

g(i, u) +
∑
j

pij(u)Jk(j)


lim
k→∞

⇒

J∗(i) = min
u∈U(i)

g(i, u) +
∑
j

pij(u)Jk(j)


• Issue: Is J∗(·) unique solution to Bellman equation?

• Given another solution, J̃ , could start with J0 = J̃ but still converge to J∗ → J̃ = J∗.



Stationary Policy Derivation

• Let Jµ denote the cost of the stationary (stage-independent) policy:

π = {µ, µ, µ, . . .}

Then

Jµ(i) = g(i, µ(i)) +
n∑

j=1
pij(µ(i))Jµ(j)

and Jµ(·) can be computed as limit of

Jk+1(i) = g(i, µ(i)) +
n∑

j=1
pij(µ(i))Jk(j)

• How? Apply prior results with U(i) = µ(i).

• A stationary policy is optimal ⇔

µ(i) = arg min
u∈U(i)

g(i, u) +
n∑

j=1
pij(µ(i))J∗(j)


• Proof (⇐): If µ achieves the minimum, then Jµ = J∗ (apply above result).

• Proof (⇒): If J∗ = Jµ, then

Jµ(i) = g(i, µ(i)) +
∑
j

pij(µ(i))J∗(j)

= J∗(i)

= min
u∈U(i)

g(i, u) +
∑
j

pij(u)J∗(j)




