Dynamic Programming Lecture #13

Outline:

e Infinite Horizon Preview
e Stochastic Shortest Path

e Bellman equation



Infinite Horizon

e System:

Tpy1 = fr(@Tr, up, wy)

e New cost:

min £ { > gr(wr, ug, wk)}

k=0

e Why deal with oo horizon?

— Know game is finite, but don't know # stages.

— 00 horizon set-up may be simplifying!

e Important assumption: Make all terms stage-independent:

v = f(z,u,w)



Problems with Infinity

e Example:

T = Ax + Bu+ Lw

o0
min ¥ 27 Qz + ulu
k=0

Issue: Cost is infinite!

e Ways around oo:

— Stochastic shortest path

cost = F { > g(ﬂfk,uk,wk)}

but we WILL terminate.

— Discounted cost:

cost = F { > ozkg(:ck,uk,wk)}
k=0

= F {g(:co, ug, wo) + ag(w1, up, wy) + &2 g(wg, Uy, wy) + .. }

with 0 < o« < 1 = far future doesn’'t matter.

— Average cost:

" &
cost = ]\1[1_{20 NE {kzzog(xkauk,wk)}

now near future doesn't matter.

— Specialized analysis and monotonicity.



Expectations

e Policy is stage-independent

{10, pa, oy b vs {ps gy gy -}
Why whould 1,000,000 stages to go differ from 1,000,001 stages to go?

e DP recursions (new notation):

Jrrr = min E{g(z,u,w) + Ji(f(z,u,0))}

Before:
JOHjl...JNfl — Jy

Now:
Joo(7) <—...J2<—J1 <—J0

Expect J, — J* for ANY J.

e New Bellman equation:

J(x) = min £ {g(z,u,w) + J*(f(2,u,w))}

i.e., a “fixed point” of DP iterations.



Set-up: Controlled Finite State Markov Chains

e State-space: X ={1,2,...,n}.

e Controls: For i € X, must use u € U(i), where U(i) is finite set.
e Transistion probabilities: p;;(u) or P(u).

e Notation: 7 = {uq, fi1, f12, - - - }-

e Infinite horizon cost:
. . N—l .
mﬁlnj\lflm E{ > g(wk, pr(zr))|xg = 2}
e k=0
e Note: We do NOT write >3°

1. Commit to 7.
2. Take limit.



Stochastic Shortest Path

e Assume a cost free termination state: ¢

- ptt(u) =1
— pii(u) =0
—g(t,u) =0

e ASSUME: There exists an m s.t. for any 7:

pr = max Pr(z, #tlz,=14i7m1)<1

1=1,...,n
i.e., after m-steps, there is a non-zero probability that we will terminate.

e Fact: Since U(7) is always a finite set, there is a finite number of policies over [0, m — 1],
SO
max pr = p < 1
e Assumption assures that probability of continuation decay exponentially.
— What is Pr(z,, #t & xg9,, #1)?
Pr(xoy, # tlzm # )Pz, #1t) < p?

— Similarly Pr (zp, #1) < pF.



Bounding the Cost

e Let J,(i) = cost of policy 7.

o Set

G = max |g(i, u)]

=1,...,n

—[0,m—1]: E{X g} <mG
— [m,2m —1]: E{>X g} < mGPr(z, #1t) < pmG
— [2m,3m — 1] : E{X g} < p’mG

Total cost bound:

T (i) <mG(L+p+p*+...) =mG——



Main Result: Value lteration

e Note: Suppose z =i and zt = j.

E; {F(j,u)li} = z pij(u) (G, )

e THEOREM: For ANY starting Jy(1),..., Jo(n), the value iteration
Ji1(i) = UE}}I&) (g(i,u) + 37—y pij(u) Je(5) )
converges to the optimal cost J*(i).
e Furthermore, J*(i) satisfies the Bellman equation:
J7(i) = min (g(i,u) + 25 pij(u)7°(7))

i.e., J*(-) is a fixed-point of value iteration.



Proof

e Divide time [0, N — 1] into intervals:

[0,m —1],[m,2m —1],...,[(K — 1)m, Km — 1], [Km, N — 1]
o Cost of 7

Je(z9) = &@)@E{gg(fﬁkaﬂk(ﬂ?k))}

= E {Kflg(xk,uk(xk))} + ]\}E%OE{ Nil 9(xr, ﬂk(l‘k))}

k=0 k=Km
e Second term bound:

K

< mG-L—_

I—p

\E{ > gl

k=Km

e Consider using Jy(-) as start of value iterations (terminal penalty). The diminishing role
can be seen by:

B {Jo(xxm)}] < p" max|Jo(i)]



Proof, cont (2)

e Approximate value of J(xg):

Km—1 K

Jr(z0) = E{ kgo g(fﬂk,ﬂk(l’k))} imGlp_p

+E{Jo(zkm)} — E{Jo(zkm)}

= B awn + " oo

oK
:tmGli + p" max |Jo(7)|
— p %

e Minimize both sides over (different) =

K
J (o) = Jgm(T0) + mGlp_p + p" max [ Jo (i)

so as K — oc:

JKm (SI}()) — J* (:CO)

e Could repeat analysis using any intervals of width [0, m + ¢ — 1] to get desired result.



Proof, cont (3)

e Now to show J*(+) satisfies Bellman equation:
i) = i fatic) + S 20) |
uelU (i) J

lim =

k—oo

ﬁ@zmm%@w+;mW%m}

uelU (i)
e ISSUE: Is J*(-) unique solution to Bellman equation?

e Given another solution, j, could start with Jy = J but still converge to J* — J = J*



Stationary Policy Derivation

e Let J, denote the cost of the STATIONARY (stage-independent) policy:

T = {4, s s - - -}
Then

cmw:mmm»+§pmmm@u>

and J,(-) can be computed as limit of
i@ = g0 p(@)) + 2 pis (i) Ji(7)
J:
e How? Apply prior results with U (i) = pu(7).
e A stationary policy is optimal <
p(i) = arg min < g(i,u) + > pij(p(2))J"(7)
UGU(Z) ]:1
e Proof («=): If ;1 achieves the minimum, then J, = J* (apply above result).
e Proof (=): If J* =J,, then

Ju0) = gli, (D)) + X pig () T ()
— )



