
Dynamic Programming Lecture #16

Outline:

• Approximate Dynamic Programming

• Temporal Difference Learning

1

Approximate DP & the Curses

• Curse of dimensionality:

– Large state-space

– Large control-space

• Example: Inventory control with failure-prone machines

x+ = x+ αu− d,

x inventory
u production
d demand
α machine state ∈ {0, 1}

• Probabilities: p01(u) & p10(u) =???

• # states = 2× # allowable parts per machine

• Now consider N -machines:

. . . d

• # states = 2N× (# allowable parts per machine)N

– 3 parts/machine & 8 machines → 1, 700, 000 states

– 3 parts/machine & 9 machines → 10, 000, 000 states

• Curse of modeling: Need knowledge of pij(u)

2

Facing the Curses

• Approaches:

– Use experience based updating (online algorithms)

– Use complexity reduction approximations (cost function parametrization)

– Use simulation based planning (receding horizon policy evaluation)

• Central point: Approximation of (optimal) cost-to-go

• Suppose Ĵ(·) is an approximate cost-to-go, and consider

µ(i) = arg min
u∈U(i)

g(i, u) +
∑
j

pij(u)Ĵ(j)

– If Ĵ approximates J∗, then above policy should be near optimal.

– If Ĵ approximates Jµ, then above policy represents policy update step of policy
iteration.

3

Value Function Approximation

• Impose a structured form of J :
J(i) = Φ(i; r)

• Particularly convenient form: Feature vectors.

J(i) =
L∑
`=1

φ`(i)ri = φT(i)r

• Example: Tetris features

– Column heights

– Column height differences

– Maximum column height

– Number of “holes”

• Basis coefficients ri determine relative importance of features.

• Approximation based policy:

µ(i; r) = arg max
u∈U(i)

g(i, u) +
n∑
j=1

pij(u)Φ(j; r)

4

Temporal Difference Learning

• Initial focus: Autonomous Systems

xt+1 = f(xt, wt)

Note there is no notion of control:

• Consider approximating a value function of the form:

J∗(x) = E

[∞∑
t=0

αtg(xt)
∣∣∣x0 = x

]
with a function of the form

J̃(x, r) =
K∑
k=1

r(k)φk(x)

• General idea: Refine weights through simulated play and observation of results

– Let rt be the weights at time t

– Initial estimate of cost to go from xt: φ(xt)r
T
t

– Improved estimate of cost to go from xt: g(xt) + α · φ(xt+1)r
T
t

• Define temporal difference (improved estimate - original estimate)

dt =
(
g(xt) + α · φ(xt+1)r

T
t

)
−
(
φ(xt)r

T
t

)
• Goal: Use temporal difference to adjust weights

5

Temporal Difference Learning

• Temporal Difference Learning: Protocol for adjusting weights

rt+1 = rt + γt · dt · zt

where γt ∈ [0, 1] is step-size and zt ∈ RK is a direction vector and of the form:

zt =
t∑

τ=0

(αλ)t−τφ(xτ)

where λ ∈ [0, 1] is a tuning parameter that scales past basis vectors.

• Referred to a temporal different learning with λ, i.e., TD(λ)

• Special case: λ = 0, i.e., TD(0), which results in update of form

rt+1 = rt + γt · dt · φ(xt)

• Fact: There exists an r(λ) such that:

– limt→∞ rt → r(λ) with probability 1

– J̃
(
·, r(λ)

)
performs close to best approximation function using basis functions, i.e.,

||J∗ − J̃(·, r(λ))|| ≤ ρ||ΠJ∗ − J∗||

for some ρ > 1 and some norm. ΠJ∗ is best approximation function.

• Key technical assumptions:

– Step size γt → 0 at “right” rate (common choice γt = 1/t)

∗
∑∞

t=0 γt =∞
∗
∑∞

t=0(γt)
2 <∞

– All states visited infinitely often.

6

Gibbs distribution

• New Focus: Controlled system with stationary policy µ

xt+1 = f(xt, µ(xt), wt)

• Temporal difference learning can be used to approximate Jµ. How do we ensure all states
are visited infinitely often?

• Answer: Add noise to the policy µ

• Probability simplex: (assume U = U(x) for all x)

∆ =

{
p ∈ R|U | : pi ≥ 0 &

∑
j

pj = 1

}

(suppress |U | in notation)

• Compare:

u ∼ rand[p] =

0
0
1
0
0
0

 vs. u ∼ rand[p′] =

ε

ε

1− 5ε
ε
ε
ε

• Note: p′ is approximately p but induces more exploration

• Utility: Ensure that every state visited infinitely often

• Question: Heterogeneity in noise? i.e., better states more likely to be visited?

7

Gibbs distribution, cont

• Suppose

µ(x) = arg maxu∈U G(x, u)

• Now define Gibbs distribution or “soft-max”:

σsmax(x;T) ∈ ∆

by

σsmax(x;T) =
1

Z

eG(x,u1)/T

eG(x,u2)/T
...

eG(x,u|U |)/T

where Z is a normalizing factor to assure σsmax(x;T) is on the simplex, i.e.,

Z = eG(x,u1)/T + eG(x,u2)/T + ...+ eG(x,u|U |)/T

• Details:“Temperature” T > 0

• Main idea:

– For high temperatures (T � 1), approximates uniform distribution

– For low temperatures (T � 1), approximates σmax(x)

• Example: Let G(x, u1) = 1 and G(x, u2) = 2

1

Z

(
e1/0.1

e2/0.1

)
=

(
0
1

)
vs

1

Z

(
e1/1

e2/1

)
=

(
0.27
0.73

)
vs

1

Z

(
e1/5

e2/5

)
=

(
0.45
0.55

)
• Works for utility maximization. Must put in ‘-’ sign for cost minimization

8

Controlled Temporal Difference Learning

• Goal: Find stationary policy µ that optimizes

J∗(x) = E

[∞∑
t=0

αtg(xt, µ(xt))
∣∣∣x0 = x

]
where α ∈ [0, 1]

• Algorithmic thoughts:

1. Fix structure of approximation functions

J̃(x, r) =
K∑
k=1

r(k)φk(x)

2. Fix stationary policy µk and simulate with softmax

3. Use temporal difference learning to approximate Jµk

rk0 → rk1 → rk2 → . . .→ r(λ,k)

4. Perform policy improvement: µk → µk+1

5. Use temporal difference learning to approximate Jµk+1 and simulate with softmax

rk+1
0 = rλ,k → rk+1

1 → rk+1
2 → . . .→ r(λ,k+1)

6. Repeat

• Note: Time-scale separation, i.e., evaluation then improvement

• Is time-scale separation necessary? In practice, it does not appear so.

9

Controlled Temporal Difference Learning

• Recap: Tetris objective

max lim
N→∞

E

{
N∑
k=0

g(xk, uk)

}
• Assume a linear basis approximation for the value function:

φ(i)rT ≈ lim
N→∞

E

{
N∑
k=0

g(xk, uk)|xo = i

}
• Algorithmic procedure

– Step 1: Simulate policy using approximate cost to go with current weights

∗ State/weights at time t: xt, rt
∗ Action at time t: ut ∼ σsmax(x;T) where T > 0 and for any ut ∈ U(xt)

G(xt, ut) = Ewt

[
g(xt, ut) + φ(f(xt, ut, wt))r

T
t

]
∗ State at time t+ 1: xt+1 ∼ f(xt, ut, wt)

– Step 2: Evaluate temporal difference

dt = g(xt, ut) + φ(xt+1)r
T
t − φ(xt)r

T
t

– Step 3: Revise weights
rt+1 = rt + γt · dt · zt

In the case of TD(0) we have

rt+1 = rt + γt · dt · φ(xt)

– Repeat

• Tends to work well in practice. No theoretical guarantees.

• For more information see: Neuro-Dynamic Programming: Overview and Recent Trends
by Benjamin Van Roy

10

