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Abstract—Research on bio-inspired flapping-wing micro-
aerial vehicles (MAVs) has experienced a steady growth over 
the past two decades. In particular, experiments on insect flight 
dynamics may provide new solutions for various challenges 
ranging from morphological design to force control 
mechanisms. A significant amount of research in this area is 
focused on modeling and simulation of such dynamics; 
however, mass of the wings and corresponding inertia effects 
are often ignored for simplification purposes. In this paper, the 
MAV is considered to be a structure with three rigid bodies, 
i.e., a main body and two wings. Wing strokes are limited 
within the body’s transverse plane, though each wing can also 
passively pitch around its lateral axis. Using the Lagrangian, a 
dynamic multibody model of this system is developed to «1» 
analyze the significance of wing mass in flight dynamics and 
«2» simulate flight control experiments. The employed control 
approach is based on investigated relationships between 
mechanical impedance properties of the wing pitch joints and 
average values of aerodynamic forces. The results suggest that 
the wings’ mass and mechanical impedance properties of the 
joints can be optimized together to enhance lift/thrust 
production. In addition, simulations of various flight 
maneuvers with the optimized model and proposed control 
approach always demonstrate an agile and stable behavior. 

Keywords—Insect Flight; Multibody Systems; Micro-Aerial 
Vehicles; Simulations; Flapping-Wing; Tunable Impedance; 
Passive Dynamics; Maneuverability. 

I. INTRODUCTION 
N recent years, a considerable amount of work has been 
concentrated on the study and design of micro-aerial 

vehicles (MAVs). The main motivation for development of 
research on this new class of vehicles is the emergence of 
numerous civilian and military applications that usually have 
specific requirements in terms of size and mobility. Such 
applications may vary from surveillance missions to 
inspection of environments that are either hazardous or 
difficult to access. Carrying out such tasks – both in indoor 
and outdoor environments – often calls for exceptional flight 
capabilities. In addition to high maneuverability and obstacle 
avoidance, these vehicles must be able to move effectively 
in reduced spaces, navigate at both high and low velocities 
and quickly switch between efficient forward/backward and 
hovering flight. These combined features are well beyond 
the capabilities of conventional fixed and rotary wing 
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mechanisms. Thus, in search for alternative solutions, many 
researchers have looked to nature and its flapping-wing 
mechanisms. Years of evolution have equipped birds and 
insects with amazing flight capabilities [1-2]. For example, 
hummingbirds are not only highly agile but also efficient 
enough to migrate [1]. 

At present, several prototypes exist that are capable of 
basic flight maneuvers over short periods of time, e.g., 
Harvard’s Robotic Fly [3], Delfly [4] and the Entomopter 
[5]. However, there are still many challenges that must be 
overcome, including hardware miniaturization, power 
storage, light construction materials, morphological design, 
and better understanding of the unsteady aerodynamics at 
low Reynolds numbers. 

Research on flapping flight has expanded greatly in recent 
years. In particular, much work has focused on the 
aerodynamics involved [6-9]. In these works, flapping-wing 
dynamics are generally investigated by using standard 
aircraft equations with six degrees of freedom [10]. 
However, this approach ignores the mass of the wings and 
the corresponding inertial effects under the assumption of 
small relative wing mass with respect to the rest of the body. 
Few researchers have investigated multibody dynamics and 
the significance of wing mass in flapping-wing flight [11-
12]. A study of the influence of wing mass on dynamics of 
an ornithopter has been carried out in [12]. There, it has been 
shown that when masses of the wings are much smaller than 
body mass, numerical results approach the estimations given 
by the standard aircraft model. However, a complete 
dynamic model at small scales remains an open challenge 
due to nonlinear/unsteady aerodynamics, variable mass 
distributions, and highly nonlinear motions that characterize 
the flight of insects and small birds. 

In this paper, we model a hummingbird-scale flapping-
wing MAV as three rigid bodies; one for the central body 
and one for each wing. It is assumed that wing stroke 
motions are actively driven, but that each wing is also able 
to passively pitch around its lateral axis due to the balance 
between aerodynamic torque and mechanical impedance of 
the wing-body connection [13-14]. Using the Lagrangian 
approach, a multibody dynamic model is derived for this 
structure that, together with a quasi-steady-state 
aerodynamic model [10,  15], is employed to investigate the 
influence of wing masses and their inertial effects on flight 
dynamics. Our analysis shows that each wing mass and its 
distribution can be optimized to enhance lift/thrust 
production. 

We then use the optimized model to simulate and control 
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motion along basic flight trajectories. The employed control 
approach is based on a Tunable Impedance (TI) method 
which relies on the observed relationships between 
mechanical impedance parameters of the wing-body 
connection and average lift/thrust production [15]. This 
method has previously provided outstanding results with the 
standard aircraft model [14-16], and the present work 
investigates the importance of considering a more accurate 
multibody dynamic model. 

The remainder of this paper is organized as follows. 
Geometric properties of the body and a brief summary of the 
aerodynamic model are presented in Sections II and III, 
respectively. An overview of the multibody dynamic model 
is given in Section IV. Section V analyzes the overall model 
for possibility of aerodynamic force optimization. Section 
VI describes the employed control architecture. The results 
of simulated flight experiments are presented in Section VII, 
and Section VIII concludes this work. 

II. GEOMETRY OF THE FLAPPING-WING MAV 
The free-body diagram of a typical two-winged flapping-

wing MAV is illustrated in Fig. 1. This diagram is based on 
MAVs such as Harvard’s Robotic Fly [3] whose main body 
is normally in an upright alignment, i.e., similar to a 
hummingbird. There are three rigid bodies present: one for 
the main body and one for each wing. The shape and related 
parameters of the left wing are shown in Fig. 2. Note that the 
right wing is the exact mirror of the left wing. 

In Fig. 1.b, the stroke angles of both wings are shown by 
ϕ1 and ϕ2. Stroke motion is restricted within X̅ Y̅ plane, i.e., 
the transverse plane of the main body. However, each wing 
is also able to freely rotate around its lateral axis – 
highlighted by dashed lines in Fig. 1 and represented by y̅1 in 
Fig. 2. It is assumed that the overall aerodynamic force of 
each wing is observed at its center of pressure (CoP) while 
gravitational force affects each wing at its center of mass 
(CoM). The locations of both points with respect to wing’s 

lateral and stroke axes are shown in Fig. 2. The illustrated 
geometric parameters are listed in Table I. 

III. AERODYNAMIC MODEL 
We have previously used [10,  18-19] to model the overall 

aerodynamic force in a hummingbird scale flapping-wing 
MAV [15]. Here, we only review the final equations for the 
wing shape in Fig. 2. For further details, see [10,  15]. 

Fig. 3.a shows the normal and tangential components of 
aerodynamic force at the right wing’s center of pressure, i.e., 
FN and FT, respectively. The corresponding lift FZ̅ and drag 
FD components are also illustrated. FD is composed of two 
other components: forward and lateral thrusts, i.e., FX̅ and FY̅ 
as demonstrated in Fig. 3.b. 

Using the quasi-steady-state approach described in [15], 
for each wing with the shape shown in Fig. 2, the 
aerodynamic forces are estimated as: 

  4)3462.1(0442.0 WNN RCF                   (1) 

  40442.0 WTT RCF                                        (2) 

where: 
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Fig. 1.  Free-body diagram of a two-winged flapping-wing MAV: (a) 
frontal and (b) overhead views. The lateral axis of each wing is 
highlighted by a dashed line. Position of each wing joint can be 
located with respect to center of mass of the main body, i.e. M, using 
three parameters: L, d and l0. Center of mass of the left and right 
wings are represented by m1 and m2, respectively. 
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Fig. 2.  The shape and related parameters of the left wing. The span of 
the wing is represented by Rw. l and r variables are used to define the 
position of wing’s center of mass (m1) and center of pressure (CoP1) 
with respect to wing’s lateral and stroke axes. 
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TABLE I 
GEOMETRIC PARAMETERS OF THE MULTIBODY MODEL 

Symbol Description Value 

RW span of each wing in an average 
hummingbird 

8×10-2 m 

ri distance of each wing’s CoM from 
its stroke axis (i = 1,2) 

4.632×10-2 m 

li distance of each wing’s CoM from 
its lateral axis (i = 1,2) 

5.645×10-3 m 

rCoPi distance of each wing’s CoP from 
its stroke axis (i = 1,2) 

5.777×10-2 m 

lCoPi distance of each wing’s CoP from 
its lateral axis (i = 1,2) 

5.38×10-3 m 

L distance of wing joints from CoM 
of the main body along Z̅ axis 

2.889×10-2 m 

d distance of wing joints from CoM 
of the main body along Y̅ axis 

5.777×10-3 m 

l0 distance of wing joints from CoM 
of the main body along X̅ axis 

5.777×10-3 m 

 



  

are the aerodynamic coefficients [15, 17]. Both coefficients 
are functions of wing pitch angle ψ, as defined in Fig. 3.a. In 
(1) and (2), the density of air is shown by ρ while RW 
represents the span of the wing (Fig. 2). 

From Fig. 3.a, F Z̅ and FD can be calculated as: 
 cossin TNZ FFF                                                  (5) 

 sincos TND FFF                                                  (6) 

FX̅ and FY̅ are also calculated from Fig. 3.b as: 
cosDX FF                                                                 (7) 

sinDY FF                                                                     (8) 

IV. MULTIBODY DYNAMIC MODEL 
The free-body diagram in Fig. 1 can be used to calculate 

the location of each body’s center of mass along X̅ Y̅ Z̅ axes, 
i.e., in the local body coordinate system. Choosing the 
overall center of mass as the origin of X̅ Y̅ Z̅ system, for any 
set of angles ϕ1, ϕ2, ψ1 and ψ2 as defined in Fig. 1.b and Fig. 
3, the following center of mass coordinates are derived for 
each of the three bodies: 
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where MT = M+m1+m2 is the total mass of the system and: 
2,1),sin()cos()sin(  ilrA iiiiii                   (12) 

2,1),sin()sin()cos(  ilrB iiiiii                   (13) 

2,1),cos(  ilC iii                                               (14) 

M, m1 and m2 are the masses of the main body and the left 
/right wings, respectively. The position of each wing’s 
center of pressure, i.e. P̄CoP1 and P̄CoP2, can be similarly 
derived in X̅ Y̅ Z̅ coordinate system. 

Fig. 4 illustrates how the local X̅ Y̅ Z̅ body frame is related 
to the global reference frame, XYZ. There are three 
consecutive rotations involved: rotation around X axis by 
angle α, rotation around new Y' axis by angle β and finally 
rotation around new Z'' axis by angle γ. The overall rotation 
matrix is: 
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where c and s are respectively the cosine and sine functions 
of the indexed angles. Thus, each P̄ coordinate set in X̅ Y̅ Z̅ 
system is mapped to a P coordinate set in XYZ system via: 

CoMPPRP  ),,(                                                   (16) 

Here, PCoM =  [x, y, z]T represents the position of MAV’s 
overall center of mass in XYZ coordinate system.  

Under point mass assumption, the kinetic and potential 
energies of the model, i.e. T and V, are as follows: 
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where g is the standard gravity. The last two terms in (18) 
are the potential energies of mechanical structures that 
model the wing-body connection. Inspired by muscle-wing 
connections in insects, in [15] we have shown that each one 
of these connections can be modeled by a torsional spring: 

2,1),( 0  iK iiii                                          (19) 

Here, Ki is the stiffness of the spring while ψ0i represents the 

 
Fig. 3.  (a) Right wing’s cross-section (during downstroke) at center 
of pressure, illustrating the pitch angle ψ2. Normal and tangential 
aerodynamic forces are represented by FN2 and FT2. FZ̅2 and FD2 
represent the lift and drag components of the overall force. (b) 
Overhead view of the wing/body setup which demonstrates the stroke 
angle ϕ2. FX̅2 and FY̅2 are components of FD that represent forward and 
lateral thrust, respectively. 
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Fig. 4.  Transformation from the global reference frame (XYZ) to the 
local, main body frame (X̅ Y̅ Z̅) involves three consecutive rotations: 
rotation around X axis by angle α, rotation around Y' axis by angle β 
and rotation around Z'' axis by angle γ. 
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wing’s pitch equilibrium angle (as defined in Fig. 4 of [15]). 
From (19), any deviation from ψ0i due to aerodynamic force 
FNi will result in production of a resistive torque τψi. 

Using Lagrangian mechanics for the system with kinetic 
and potential energies described in (17)-(18), the equations 
of motion can be derived in the following form: 
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Here, bv is the viscous damping coefficient of the main body. 
Furthermore: 

Rzyxzyx ],,[],,[                                                          (22) 

where [ẋ,  ẏ,  ż] represents the velocity of overall center of mass 
in XYZ coordinate system. The columns of matrix R̄ are the 
projection of X̅1Y̅1Z̅ system’s unit vectors in XYZ coordinates. 
When solving the equations of motion in (20) and (21), R̄ is 
updated at the end of every time step Δt via: 

OldNew RtttRR ),,(                                              (23) 

We assume that at t = 0 sec, R̄ is equal to the identity matrix 
I3×3, i.e., X̅ Y̅ Z̅ and XYZ systems are initially aligned. 

In (20), the individual entries of matrices E and N are 
derived using Mathematica. Since inertia tensor of the main 
body is near diagonal [14-15] and its mass is much larger 
than wings, appropriate modification of entries on the main 
diagonal of E can approximately take into account the 
inertial effects of mass distribution in each individual body. 
The diagonal entries corresponding to α, β, γ, ϕ1 and ϕ2 are 
increased by Jα, Jβ, Jγ, Jϕ1 and Jϕ2, respectively. The diagonal 
entries corresponding to ψ1 and ψ2 are replaced by Jψ1 and 

Jψ2, respectively. As described in Table II, each J represents 
a moment of inertia for one of the bodies illustrated in Fig. 1 
and Fig. 2. Every entry in vector τT is the sum of 
aerodynamic and gravitational torques that influence the 
corresponding angular acceleration in vector  q̈. In some 
cases, a linear rotational damping term has been included as 
well (bω and bψi in Table II). For the purpose of active stroke 
control, the entries of τT that correspond to ϕ1 and ϕ2 also 
include input torque terms τϕ1 and τϕ2, respectively. 

V. MODEL ANALYSIS AND OPTIMIZATION 
Following the work presented in [15], it is assumed that 

stroke angles of both wings have the same profile: 
  2,1,2cos0  itf si                                  (24) 

where ϕ0 = π/3 rad is the magnitude of stroke and fs = 25 Hz 
represents flapping frequency. Both values are chosen based 
on flapping characteristics of a similarly sized hummingbird 
[1]. δ is a variable bias that is used to stabilize the main 
body’s pitch angle and will be discussed further in Section 
VI. Throughout this section, (1)-(8) and (20)-(21) are solved 
with the following constraints: α = β = γ = δ = 0 rad, i.e., local 
and global frames are the same. Hence, the model always 
maintains its upright orientation. 

Using a single-body model, it has been previously 
observed that mechanical properties of the joint, i.e. Ki and 
ψ0i (i = 1, 2), can be optimized to enhance the average values 
of aerodynamic forces [14-15]. Here, we will investigate the 
same possibility with the multibody model, taking into 
account that each wing’s mass and its inertia also affect the 
production of these forces. 

The total mass of the model MT is assumed to be constant 
(Table II). To analyze the combined influence of mechanical 
impedance parameters and masses of the wings, we need to 
calculate the average lift and forward thrust over one steady 
stroke cycle. The results for various values of stiffness and 
wing mass are plotted in Fig. 5.a-b. Similar results for 

 
Fig. 5.  (a) Average lift and (b) average forward thrust of the MAV vs. 
stiffness for different values of wing mass. The pitch equilibrium 
points of both wings are set to 0 rad. (c) Average lift and (d) average 
forward thrust of the MAV vs. ψ0 for different values of wing mass. 
In each case, the stiffness of both wing-joints are set to the 
corresponding lift-maximizing value in Fig. 5.a, i.e. K*. m*

 = 2.5×10-4 
kg is the lift-optimizing value of wing mass. The values of all forces 
are normalized by the total weight of the model. 
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TABLE II 
PHYSICAL PARAMETERS OF THE MULTIBODY MODEL 

Symbol Description Value 

ρ air density at sea level 1.28 kg∙m-3 
g standard gravity at sea level 9.81 m∙s-2 

MT total mass of the modeled MAV 4×10-3 kg 
mi mass of each wing (i = 1,2) 2.5×10-4 kg 

Jα=Jβ pitch and roll moments of inertia of 
the main body relative to overall 
CoM (uniform mass distribution) 

4.38×10-6 kg∙m2 

Jγ yaw moment of inertia of the main 
body relative to overall CoM 
(uniform mass distribution) 

1.15×10-7 kg∙m2 

Jϕi moment of inertial of each wing 
relative to its stroke axis (uniform 
mass distribution, i = 1,2) 

6.117×10-7 kg∙m2 

Jψi moment of inertial of each wing 
relative to its lateral axis (uniform 
mass distribution, i = 1,2) 

1.955×10-8 kg∙m2 

bω 
 

passive damping coefficient of the 
main body (pitch, roll and yaw) 

3×10-3 kg.m2∙s-1 

bψi passive damping coefficient of each 
wing (pitch rotation, i = 1,2) 

5×10-6 kg.m2∙s-1 

bv viscous damping coefficient of the 
main body when moving in the air 

4×10-4 kg∙m-1 



  

various values of ψ01 = ψ02 = ψ0 and wing mass are illustrated 
in Fig. 5.c-d. In each case, the moments of inertia of the 
wings have been recalculated under the assumption of 
uniform mass distribution. The diagrams in Fig. 5 suggest 
that under this assumption, m1  = m2  = m*

 = 2.5×10-4 kg will 
optimize the force profiles. Note that in one case, the mass 
of each wing has been reduced to 1% of m*. The 
corresponding force diagrams are in agreement with the 
results of previously investigated single-body model in [15]. 

Through changes in wing mass distribution, i.e., 
modifying the values of Jψ1 and Jψ2, it is possible to further 
improve the maximum value of average lift. In fact, reducing 
these values to 54.67% of the original amount – i.e., Jψi for 
uniform density in Table II – is the optimum choice. The 
corresponding diagram for evolution of average lift vs. 
stiffness is illustrated in Fig. 6.a. From this diagram, when 
the stiffness of both wing-joints is set to Kop = 6.7×10-3 
N∙m/rad, the model generates just enough lift for hovering. 
Under these circumstances, the evolution of average forward 
thrust vs. ψ0 is plotted in Fig. 6.b. Note that for ψ0 = 0 rad, net 
production of forward thrust is insignificant. Hence, K = Kop 
and ψ0  =  0 rad are a suitable choice for nominal values of 
mechanical impedance parameters during hovering flight. 

VI. FLIGHT CONTROL 
Fig. 7 illustrates the control structure for each wing. This 

design is based on the Tunable Impedance method [14-15] 
which states that through manipulation of joints’ mechanical 
impedance characteristics around a chosen operation point 
(K = Kop and ψ0  = 0 rad), it is possible to control the net 
production of lift and thrust for each wing (Fig. 6) and thus, 
achieve three-axis control. 

Due to constant displacement of each wing’s center of 
pressure with respect to the overall center of mass, the pitch 
angle of the body θpitch becomes inherently unstable. To keep 
this angle small, i.e., to maintain the upright orientation of 
the model, a PD sub-controller – tuned to kp = 10 and kd = 0.1 
via trial and error – is used to control δ. The output of this 
controller is limited such that |δ| ≤ π/12 rad. This variable is 
used to bias the reference stroke profile as described in (24). 
A proportional controller – with its gain set to 103 – regulates 
input torques τϕ1 and τϕ2 such that both wings follow this 
biased reference stroke profile. 

Fig. 6.a suggests that near K = Kop, average lift is an 
approximately linear function of log10(K). In addition, the 
relationship between average forward thrust and ψ0 is also 
close to linear around ψ0 = 0 rad (Fig. 6.b). Through system 
identification experiments around this point, i.e., calculation 
of empirical transfer function estimates followed by 
subspace identification method [19], the corresponding 
transfer functions were found and used to develop a linear 
approximation of the dynamics that relate vertical/horizontal 
positions and velocities to mechanical impedance parameters. 
The LQR gains of the lift and thrust sub-controllers in Fig. 7 
are then calculated for this linearized system: 

zzzrefK  )(20                                                  (25) 

xxxref 5.2)(750                                                (26) 

where x and z are the coordinates of overall center of mass in 
the XZ plane. ΔK is a dimensionless parameter while ψ0 is 
calculated in radians. The reference flight trajectory within 
this plane is defined by xref and zref. To avoid considerable 
drift from linear approximation, outputs of these sub-
controllers are limited such that Ki ∈ [0.2, 4] ×10-2 N∙m/rad 
and |ψ0i| ≤ π/9 rad (i = 1, 2). 

VII. SIMULATED FLIGHT EXPERIMENTS 
To investigate the performance of our controller, flight of 

the optimized MAV model over various trajectories has been 
simulated. In all cases, the model demonstrates acceptable 
tracking precision with agile and stable motion. Because of 
space limitations, here we will only present the results of 
experiments with three distinct types of trajectories in the XZ 
plane. With no external disturbance present in these cases, 
angles α and γ remain equal to 0, resulting in β = θpitch. It is 
assumed that at t = 0 sec, the model is hovering at the origin, 
i.e. x = z = 0 m. Due to symmetric actuation of both wings, the 
observed drift along Y axis is always insignificant. 

A. Hovering 
One of the basic requirements of a practical MAV is the 

ability to hover. Using the proposed controller in Section VI, 

 
Fig. 6.  (a) Average lift and forward thrust of the MAV vs. stiffness. 
The pitch equilibrium points of both wings are set to 0 rad. (b) Average 
lift and forward thrust of the MAV vs. ψ0. The stiffness of both wing-
joints are set to Kop = 6.7×10-3 N∙m/rad. In all cases, it is assumed that 
m1 = m2 = 2.5×10-4 kg and Jψ1 = Jψ2 = 1.0688×10-8 kg∙m2. The values of 
all forces are normalized by the total weight of the model. 
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Fig. 7.  Block diagram of the proposed Tunable Impedance controller 
for each wing (i = 1, 2) in interaction with MAV model. Cutoff 
frequency fc of each low-pass filter is 10 Hz. Both wings employ 
similar values of δ, Ki and ψ0i at all times. The reference stroke profile 
properties are always constant: ϕ0 = π/3 rad, fs = 25 Hz. 
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hovering flight of the multibody model over a period of 1 sec 
has been simulated. The results are illustrated in Fig. 8. The 
model always remains close to its original position (Fig. 8.a-
b) and maintains its upright orientation (Fig. 8.e). 
Throughout hovering, outputs of all sub-controllers only 
experience slight changes (Fig. 8.c-d and f). Fig. 8.g shows 
the model’s overall displacement in the XZ plane. This 
diagram exhibits a limit cycle behavior which is consistent 
with observations in [20]. 

B. Strictly Horizontal/Vertical Motion 
Vertical takeoff, descent and forward/backward motion 

are common modes of flight in various applications of 
MAVs. Ideally, during such maneuvers the vehicle should 
only move along one axis. Tracking the square trajectory in 
Fig. 9.g incorporates every one of these motions. As it is 
illustrated in Fig. 9.a-b, the controller successfully handles 
such maneuvers and keeps the model close to reference 
trajectory. Throughout motion, pitch angle profile of the 
main body (Fig. 9.e) differs slightly from that of Fig. 8.e; 
however, it is quickly restabilized upon resumption of 
hovering mode at t = 5 sec. Outputs of each sub-controller are 
also plotted in Fig. 9.c-d and f. 

C. Simultaneous Horizontal and Vertical Maneuvers 
In trajectories such as the square in Fig. 9.g, motion along 

one desired axis is handled by either lift or thrust sub-
controller. The remaining sub-controller treats any 
displacement along the other axis as disturbance and 
attempts to compensate for it. In practice however, most 
maneuvers require simultaneous motion along both axes. As 
a result, the performances of aforementioned sub-controllers 

must not greatly influence each other. To reduce this 
coupling effect, following the work in [16], we have chosen 
to use low-pass filters in the control structure (Fig. 7). 

As an example of control performance in such scenarios, a 
diamond-shaped trajectory consisting of ±1 sloped lines has 
been selected. Tracking of this trajectory requires all 
possible combinations of simultaneous ascent/descent and 

 
Fig. 8.  Hovering at the origin: displacement along (a) X and (b) Z 
axes, (c) pitch equilibrium angle of the wings ψ0, (d) stiffness of the 
joints K, (e) pitch angle of the main body θpitch, (f) stroke bias angle of 
the wings δ and (g) flight trajectory in the XZ plane. 
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Fig. 10.  Flight along a diamond trajectory: displacement along (a) X 
and (b) Z axes, (c) pitch equilibrium angle of the wings ψ0, (d) 
stiffness of the joints K, (e) pitch angle of the main body θpitch, (f) 
stroke bias angle of the wings δ and (g) flight trajectory in the XZ plane. 
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Fig. 9.  Flight along a square trajectory: displacement along (a) X and 
(b) Z axes, (c) pitch equilibrium angle of the wings ψ0, (d) stiffness of 
the joints K, (e) pitch angle of the main body θpitch, (f) stroke bias 
angle of the wings δ and (g) flight trajectory in the XZ plane. 
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forward/backward motion. The simulated results are 
illustrated in Fig. 10.a-b and g. Except for a slight drift 
during backward flight, both x and z coordinates of the 
model are always close to the reference trajectory. Again, 
movement may slightly perturb the upright orientation of the 
model; however, this disturbance is quickly rejected by the 
pitch sub-controller (Fig. 10.e). Outputs of each sub-
controller are also plotted in Fig. 10.c-d and f. 

VIII. CONCLUSION 
To investigate the significance of wing mass and inertia in 

flight dynamics of flapping-wing MAVs, this work develops 
a multibody model through Lagrangian mechanics. All three 
considered bodies are modeled as rigid. Furthermore, due to 
presence of a sub-model for wing-muscle connection, 
passive wing pitch reversal is possible. Our analysis suggests 
that models with nonzero wing mass tend to produce larger 
amounts of net lift and thrust for a given stroke profile (Fig. 
5). As wing mass increases, inertial effects enable the wing 
to reach larger pitch angles before reversing its direction of 
rotation. This means that for a certain range of wing mass, 
wing’s angle of attack will be close to 45˚ over a significant 
portion of each flapping cycle. The 45˚ angle of attack is a 
critical value that, as noted in [17], maximizes the lift 
coefficient. 

Wing mass and inertia can be optimized to enhance 
aerodynamic force production (Fig. 5 and Fig. 6). To control 
the optimized model, we have employed a bio-inspired 
method known as Tunable Impedance [15]. Inspired by 
insect flight, this technique is a semi-passive approach to 
motion control in flapping-wing MAVs. In short, evolution 
of each wing’s pitch angle ψi during a stroke cycle can be 
manipulated through modification of its joint’s mechanical 
impedance properties. As a result, it is possible to adjust net 
production of lift and thrust forces (Fig. 6). 

The primary advantage of Tunable Impedance over 
conventional force control methods such as Split Cycle [21] 
is its ability to operate without modification of stroke 
profile. Comparisons between these methods are available in 
[22-23]. Since magnitude and frequency of stroke remain 
constant, extra hardware for stroke manipulation in an actual 
MAV can be replaced by more compact and low-powered 
impedance manipulators, e.g. [24] or MEMS actuators. 

The controller designed on the basis of Tunable 
Impedance demonstrates an agile and stable performance. 
Furthermore, simulations of various trajectory tracking 
experiments suggest that motion control through this method 
can provide reasonable precision. Although the presented 
trajectories in this work are limited to the XZ plane, 
simulations with a single-body model [25] have shown that 
with proper modifications, Tunable Impedance can also be 
used to effectively control yaw and roll of the vehicle. 

REFERENCES 
[1] D. E. Alexander, Nature’s Flyers, The Johns Hopkins University 

Press, 2002. 

[2] R. Dudley, The Biomechanics of Insect Flight: Form, Function, 
Evolution. Princeton University Press, 2000. 

[3] R. J. Wood, “The first takeoff of a biologically inspired at-scale robotic 
insect,” IEEE Transactions on Robotics, 24, pp. 341–347, 2008. 

[4] G.C.H.E. de Croon, K.M.E. de Clerq, R. Ruijsink, B. Remes, and C. de 
Wagter, “Design, aerodynamics, and vision-based control of the DelFly” 
International Journal of Micro Air Vehicles, 1 (2), pp. 71-97, 2009. 

[5] R. Michelson, D. Helmick, S. Reece, C. Amarena, “A reciprocating 
chemical muscle (RCM) for micro air vehicle ‘Entomopter’ flight,” in 
Proc. of the Association for Unmanned Vehicle Systems International 
(AUVSI), pp. 429-443, 1997. 

[6] C. P. Ellington, “The aerodynamic of hovering insect flight I. the 
quasi-steady analysis,” Philosophical Transactions of the Royal 
Society of London, 305 (1122), pp. 1-15, 1984. 

[7] A. Willmott, C. Ellington, C. van den Berg, and A. Thomas, “Flow 
visualisation and unsteady aerodynamics in the flight of the hawkmoth 
Manduca sexta,” Philosophical Transactions of the Royal Society of 
London, B Biological Sciences, 352, pp. 303-316, 1997. 

[8] S. P. Sane, “The aerodynamics of insect flight,” J. Experimental 
Biology, 206, pp. 4191-4208, 2003. 

[9] B. Etkin, and L. Reid, Dynamics of Flight, Wiley, 1996. 
[10] X. Deng, L. Schenato, W. C. Wu, and S. S. Sastry, “Flapping flight 

for biomimetic robotic insects: part I–system modeling,” IEEE 
Transactions on Robotics, 22 (4), pp. 776–788, 2006. 

[11] J. Grauer, and J. Hubbard, “Multibody model of an ornithopter,” AIAA 
J. Guidance, Control, and Dynamics, 32 (5), pp. 1675-1679, 2009. 

[12] C. T. Orlowski, and A. R. Girard, “Modeling and simulation of 
nonlinear dynamics of flapping wing micro air vehicles,” AIAA 
Journal, 49 (5), pp. 969-981, 2011. 

[13] H. Mahjoubi, and K. Byl, “Analysis of a tunable impedance method 
for practical control of insect-inspired flapping-wing MAVs,” in Proc. 
IEEE Conf. on Decision and Control and European Control Conf. 
(CDC-ECC), pp. 3539-3546, December 12-15, 2011. 

[14] H. Mahjoubi, and K. Byl, “Tunable impedance: a semi-passive 
approach to practical motion control of insect-inspired MAVs,” in 
Proc. IEEE Int. Conf. Robotics and Automation (ICRA), pp. 4621-
4628, May 14-18, 2012. 

[15] H. Mahjoubi, and K. Byl, “Modeling synchronous muscle function in 
insect flight: a bio-inspired approach to force control in flapping-wing 
MAVs,” J. Int. & Robotic Systems, 70 (1-4), pp. 181-202, 2013. 

[16] H. Mahjoubi, and K. Byl, “Trajectory tracking in sagittal plane: 
decoupled lift/thrust control via tunable impedance approach in 
flapping-wing MAVs,” in Proc. American Control Conf. (ACC), pp. 
4951-4956, June 17-19, 2013. 

[17] M. H. Dickinson, F. Lehmann, and S. P. Sane, “Wing rotation and the 
aerodynamic basis of insect flight,” Science, 284 (5422), pp. 1954-
1960, 1999. 

[18] Y. Fung, An Introduction to the Theory of Aeroelasticity, New York: 
Dover, 1969. 

[19] T. McKelvey, H. Akcay, and L. Ljung, “Subspace-based multivariable 
system identification from frequency response data,” IEEE Trans. 
Automatic Control, 41(7), pp. 960-979, 1996. 

[20] D. B. Doman, M. W. Oppenheimer, M. A. Bolender, and D. O. 
Sigthorsson, “Altitude control of a single degree of freedom flapping 
wing micro air vehicle,” in Proc. AIAA Guidance, Navigation, and 
Control Conf., August 10-13, 2009. 

[21] D. B. Doman, M. W. Oppenheimer, and D. O. Sigthorsson, “Wingbeat 
shape modulation for flapping-wing micro-air-vehicle control during 
hover,” J. Guid. Control Dyn. 33 (3), pp. 724-739, 2010. 

[22] H. Mahjoubi, and K. Byl, “Improvement of power efficiency in 
flapping-wing MAVs through a semi-passive motion control 
approach,” in Proc. Int. Conf. Unmanned Aircraft Systems (ICUAS), 
pp. 734-743, May 28-31, 2013. 

[23] H. Mahjoubi, and K. Byl, “Efficient flight control via mechanical 
impedance manipulation: energy analyses for hummingbird-inspired 
MAVs,” J. Int. & Robotic Systems, 73 (1-4), pp. 487-512, 2014. 

[24] J. Choi, S. Hong, W. Lee, S. Kang, and M. Kim, “A robot joint with 
variable stiffness using leaf springs,” IEEE Transactions on Robotics, 
27 (2), pp. 229-238, April 2011. 

[25] H. Mahjoubi, and K. Byl, “Steering and horizontal motion control in 
insect-inspired flapping-wing MAVs: the tunable impedance 
approach,” in Proc. American Control Conf. (ACC), pp. 901-908, 
June 27-29, 2012. 


