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Abstract 

 
After decades of being overshadowed by digital systems, 
analog computing is back in the spotlight, given its speed 
and energy economy and the proliferation of compute-
intensive applications that do not require high precision. 
While pure analog processing has quite a few niche uses, 
hybrid digital/analog schemes satisfy the needs of many 
more application domains. In this paper, we review 
number representation schemes that are based on the 
analog encoding of numeric values in an otherwise digital 
arithmetic system, showing them to be closer than ever to 
practical realizability. We also point to several possible 
extensions and generalizations of the proposed schemes. 
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1. Introduction 
 

For several decades now, the world has moved 
continuously to replace analog data with digital data, 
given the latter’s robustness and affinity with digital 
computing. From 1986 to 2007, the share of stored digital 
data increased from near-zero to more than 90% [1], 
increasing further to full dominance since then. There are 
now indications that in some cases, use of analog data and 
analog computing may be beneficial. As performance 
requirements and energy limitations drive us to embrace 
approximate computing [2], the low-precision drawback 
of analog circuits is no longer a disqualifying factor. 
Furthermore, in hybrid digital/analog representations, the 
speed and low power of analog computing [3] can be 
supplemented by the high precision and reliability of 
digital arithmetic, where needed. One can visualize multi-
resolution number systems that allow us to combine fast 
low-precision with slower high-precision computation. 

2. Continuous-Digit Positional Systems 
 

 The continuous-valued number system (CVNS) was 
motivated by the desire to build circuits with high 
immunity to noise [4], [5]. In CVNS, each digit has a 
weight that is a power of the radix r, as in ordinary 
positional representations, but the digit value, instead of 
being an integer in [0, r–1], ranges continuously in [0, r). 
A good analogy for understanding CVNS is the way 
multiple dials in an electric meter, depicted in Fig. 1, 
collectively represent a value such as 23,825 KWh. The 
first (most-significant) dial represents the entire amount, 
albeit in an approximate fashion, not just 20,000, as is the 
case in digital decimal representation. 

The CVNS representation contains a form of natural 
redundancy, in that digit values in various positions 
exhibit some overlap. In the example of Fig. 1, the 
leftmost analog digit value ~2.38 tells us something about 
the next two analog digits ~0.383 and ~0.825, which in 
turn embed imprecise forms of the digits to their right. 
This overlap is what makes the representation and 
associated arithmetic circuits more immune to noise. 
Additional noise immunity can be provided through the 
use of differential-style analog circuits. 

CVNS can utilize signed, rather than unsigned, digits. 
In the radix-10 example of Fig. 1, the analog digits can be 
taken to be in (–5, 5), instead of in [0, 10). This kind of 
signed-digit representation, preferably one that is 
symmetric around 0, does not create any additional 
implementation challenges and may be preferred, 
particularly in implementing multiplication. 

 

 
Fig. 1   The electric-meter analogy to CVNS [4]. 



 

Analog Representations in Digital Arithmetic: A Review 2 52nd Asilomar Conf. Signals, Systems, and Computers  
Behrooz Parhami, September 25, 2018   Pacific Grove, CA, October 28-31, 2018 
 

3. RNS with Continuous Residues 
 

Continuous-digit residue number system (CD-RNS) 
provides a theoretical framework for the way rats handle 
the positional information required for navigation [6]. 
Conventional RNS with discrete digits is based on 
methods that were known in ancient China, as evident 
from a 1500-year-old puzzle, attributed to Sun Tzu: Find 
an integer that has the remainders 2, 3, and 2 when 
divided by 7, 5, and 3, respectively? Modern RNS 
embodiments are used in DSP applications [7]. 

Like discrete RNS, CD-RNS is based on remainders or 
residues with respect to a set of moduli. As depicted in 
Fig. 2, the residues  and  with respect to a and b, 
arising from R = ia +  = jb + , collectively pinpoint the 
value R in the one-dimensional space, a value that has 
both the remainder with respect to the modulus a (heavy 
black dots in Fig. 2) and the remainder  with respect to 
the modulus b (hollow dots in Fig. 2). 

CD-RNS offers a tradeoff between precision and range. 
If residues are known and processed with greater 
precision, they allow the representation range to be 
extended. Conversely, if only a limited dynamic range is 
needed, fewer residues and/or residues with lower 
precision will be needed, thus simplifying the circuitry, 
reducing power consumption, and increasing speed. An 
important result for a 2-modulus (0, 1)-system [6], 
easily extensible to the case of m moduli, is that to 
provide a dynamic range of  with a maximum residue 
error , we must have   01. This is the CD-RNS 
counterpart to an ordinary RNS with the moduli m1 and 
m2 having a dynamic range M  m1m2. 

The study of CD-RNS has confirmed the hypothesis of 
computational neuroscientists on the use of modular 
number representation by rats and has also supplied a 
theoretical basis for their experimental verification of the 
scheme’s feasibility and the adequacy of the dynamic 
range. As in ordinary RNS, selection of the moduli affects 
the dynamic range of CD-RNS. Intriguing open questions 
include how close the moduli in rat’s navigation system 
are to optimal values and whether there is evidence of 
evolutionary refinement of the moduli values.  

 
Fig. 2   Localization with two grids in 1D space [6]. 

4. Other Multi-Resolution Number Systems 
 

There exist at least two other proposals for hybrid D/A 
number representation, which are newer and lesser-
known. Both schemes are based on representing numbers 
in terms of timing and temporal separation of signals, 
rather than by means of signal direction or amplitude, as 
is the practice in today’s digital systems.  

In race logic [8], information is represented as timing 
delay, and computation results are derived based on 
relative propagation times of signals through circuits. 
With numbers represented as delays, the operations max, 
min, and add-constant are very easy to realize. It is too 
early to judge the usefulness of race logic in general, but 
in sample problem domains, such as DNA sequence 
alignment, practical benefits have been demonstrated over 
conventional CMOS circuits. 

For example, to determine the best alignment of two 
strings using edit-distance as a figure of merit, a 2D array 
of simple cells (quadratic complexity in string length) can 
be configured in a way that various alignments 
correspond to different paths going from one corner of the 
array to the opposite corner. Horizonal, vertical, and 
diagonal signal moves have different latencies associated 
with their edit “cost.” A signal inserted in the input corner 
will travel through multiple paths in the array, with the 
one corresponding to the lowest edit-cost getting to the 
output corner first. 

Space-time computing [9], which mimics spike-based 
neural computation in the neocortex, provides a key role 
for time as a communication and computation resource. 
To elaborate, in conventional digital circuits, the travel 
times of signals are relevant only to the extent that they 
determine the clock cycle in synchronous circuits or the 
latency in asynchronous logic. In space-time computation, 
signal timing also carries information.  

For example, to transmit one byte of data, one may 
send a start/synch spike, followed by 8 data spikes/no-
spikes, requiring 9 units of time in all and an average of 5 
energy units. The same byte can be transmitted via start 
and end spikes, separated by a time interval in [1, 256]. 
The latter approach needs 2 units of energy and an 
average latency of about 128 cycles. 

The two delay-based representations discussed in this 
section were provided only for completeness. As new 
methods that have seen limited use, we cannot yet judge 
their usefulness and applicability, or compare them 
usefully with the methods described in Sections 3-4 and 
with those of conventional digital arithmetic [10]. 
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5. CVNS and CD-RNS Similarities 
 

Two-level scheme: Both CVNS and CD-RNS use 
analog representation at the low (digit) level and digital 
interpretation at the high (inter-digit) level. The 
performance of the two schemes cannot be compared in 
an application-independent manner. For most application 
domains, CVNS will have an edge in speed, the 
exceptions being the same kinds of computational 
problems for which RNS has been found suitable [7], 
given the latter’s overheads and inherently difficult 
operations, such as division [11].  

Mixed-radix format: There is a superficial difference 
between CVNS and CD-RNS, in that the former uses a 
fixed integer radix, whereas the latter has different, 
(possibly) non-integer, moduli. Both ordinary RNS and 
CD-RNS have a close relationship with mixed-radix 
representations (such as the one used to denote time 
periods in days, hours, minutes, and seconds), which are 
sometimes used for magnitude comparisons in RNS. 
However, the idea of CVNS can be readily extended to 
mixed-radix representations, and, from there, to non-
integer radices. As an example, consider a CD-RNS with 
the two moduli 1 = 4.4 and 0 = 3.6 (Example 2 in [6]). 
Assuming an error bound of  = 0.4, this CD-RNS has a 
range of [0.0, 17.6), where the upper bound 17.6 is, 
counterintuitively, larger than the product of the moduli. 
A mixed-radix CVNS, with radices 3.6 and 4.4, will have 
a range of about 4.4  3.6 = 15.84. The representation of 
the number 9.0 is depicted in Fig. 3 for such a mixed-
radix CVNS (9.0 = 2.5  3.6 = 2  3.6 + 1.8). 

Approximate computing: Both CVNS and CD-RNS 
have an affinity with approximate computing [2] and 
related notions of adaptive-precision [12] and lazy [13] 
arithmetic. One can compute with several high-order 
digits in CVNS, switching to more precision only when 
needed, thus saving time and energy in the process. 
Similarly, using a subset of residues in CD-RNS allows 
lower-precision (or more error-prone) arithmetic, leading 
to energy savings and, for certain computations that need 
inter-residue operations, higher speed. 

 

 
Fig. 3   Example of mixed-radix CVNS. 

6. CVNS and CD-RNS Differences 
 

Word-level parallelism: A key difference between 
CVNS and CD-RNS is that the latter offers the possibility 
of parallel processing of the digits for addition/subtraction 
and multiplication, with no inter-digit dependencies. 
Thus, in applications that are dominated by 
addition/subtraction and multiplication operations, CD-
RNS may offer greater speed, provided that the faster 
operations occur frequently enough to compensate for the 
greater overheads elsewhere. Of course, various parallel-
processing techniques have been applied to positional 
representations as well [14], but at the expense of higher 
area and energy costs. 

Input/output overheads: Input conversion and output 
reconversion are more direct and, thus, much less costly 
in time and energy, for CVNS than the corresponding 
forward/reverse conversions of CD-RNS, which appear to 
be more difficult than those of ordinary RNS [15] [16]. 
On the other hand, the arithmetic operations themselves 
are, on average, simpler for CD-RNS, especially in add-
and-multiply-heavy computations. Approximate reverse 
conversion using analog circuitry is rather simple [6], but 
not universally applicable. 

Noise immunity: The range of CVNS is dictated by the 
number of digits, and its noise immunity by the precision 
of the individual analog digits. In CD-RNS, the range is 
dictated by the chosen moduli and the precision of the 
analog residues. Consider for concreteness a 2-digit 
CVNS and a 2-modulus CD-RNS with comparable 
ranges. Doubling the analog representation error will 
force us to change the CVNS radix from r to r/2, if the 
same noise immunity is to be maintained. This halving of 
the radix reduces the representation range quadratically. 
In CD-RNS, by contrast, the equation   0, 
introduced in Section 3, indicates that the dynamic range 
decreases linearly with an increase in the representation 
error . Thus, even though the two systems are similar in 
the way they deal with imprecision, CD-RNS has an edge 
in terms of the effect of imprecision on dynamic range 
and thus on VLSI area cost and energy consumption. 

Fault tolerance: Many methods of encoding numerical 
values and performing arithmetic in fault-tolerant mode 
are available. Such methods can be applied to CVNS, 
which is a positional/weighted number representation 
system. CD-RNS has a built-in capability for fault 
tolerance via a precision-robustness trade-off. Providing 
additional moduli has the dual effect of increasing the 
range and/or improving fault tolerance. 
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7. Conclusion and Future Work 
 

There is ample evidence that analog computing is 
making a comeback and that hybrid digital/analog 
arithmetic is becoming more attractive in light of 
evolving circuit technologies and computing applications. 
Our review indicates that existing hybrid representations 
are becoming ripe for practical realizations and that 
additional alternatives may emerge from further advances 
in technology and greater understanding of computational 
paradigms and application characteristics. 

There are many ways in which the strengths of analog 
and digital computing can be combined, with the number-
representation domain constituting but one of these ways. 
Where approximate values are needed, either as end 
results or as seed values in iterative refinement processes, 
they can be obtained quickly and with low circuit and 
energy costs via analog computations [17]. Neuromorphic 
computing (e.g., [18]), a paradigm that mimics neuro-
biological architectures, is another domain where analog 
circuit elements are used to great advantage. 

There is, of course, no reason why the benefits of 
hybrid analog-digital representation (circuit level) cannot 
be combined with hybrid computation at the architecture 
level, as discussed in the preceding paragraph. 

Further work on analog-digital arithmetic can proceed 
in several directions, including more detailed comparisons 
of CVNS and CD-RNS, perhaps using implementations in 
representative application domains to derive quantitative 
results, comparisons with the newer methods discussed in 
Section 4, and identifying alternative approaches. 
Selection of the number representation radix in CVNS 
and the moduli in CD-RNS, and how the choices impact 
the relative merits of the two systems, is also worth 
studying. It would be interesting to find out whether a 
single analog-circuit technology can be used to implement 
both systems, because such an eventuality will facilitate 
comparisons in circuit complexity and energy costs. 
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