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Synonyms
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Definition

Data storage, communication, and processing
consume energy, and big data requires a
correspondingly big energy budget, necessitating
more attention and effort to ensure energy
efficiency.

Overview

Until fairly recently, developments in the field
of computer architecture (Parhami 2005) were
focused around computation running time and
hardware complexity and how the two can be
traded off against each other in various designs.
With the advent of mobile devices and terascale,
petascale, and, soon, exascale computing, en-

ergy consumption emerged as a major design
factor that overshadowed the older concerns to
some extent. Key driving forces for research into
energy efficiency were battery life in compact
mobile devices with smallish batteries, energy
costs for operators of supercomputer centers, and
the difficulties of heat dissipation in both mobile
devices and mainframe/data-center installations.
We are thus motivated to seek extreme energy
economy measures to make the processing of
large data sets feasible within power budgets
that are practical for both cloud data centers and
mobile devices used at the cloud’s edges.

Energy-Efficiency Trends

Early digital computers of the 1940s performed
about one operation per Watt-hour (Wh) of en-
ergy consumed. Those machines, which resem-
bled factory equipment, were bulky, unreliable,
and user-unfriendly, problems that overshadowed
their energy inefficiency. The exponential decline
of the per-computation energy requirement, or
exponential rise of the number of operations
performed per unit of energy (Denning and Lewis
2017), over the decades is known as Koomey’s
law (Koomey et al. 2011). The exponential rise
of computational capability per kWh of energy is
depicted in Fig. 1.

A simple back-of-the-envelope calculation
based on the expected 10 bytes of data
produced per day by 2020 leads to the conclusion
that even at the optimistic 10'® computations per
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kWh, energy requirements of big-data processing
will be prohibitive.

Causes of Energy Dissipation

As energy efficiency of mainstream processors
that control servers, desktops, laptops, and
smartphones has improved, research into
ultralow-power digital circuits has paved the
way for even greater reduction in energy
requirements per computation. Physical laws
dictate that any nonlinear transformation of the
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kinds performed by standard AND/OR logic
gates must necessarily expend energy, and a
lower bound for this energy is known to be on
the order of kT, where k =~ 1.38 x 1072 is
the Boltzmann constant and T is the operating
temperature in Kelvin (Landauer 1961). This
lower bound has come to be known as Landauer’s
principle (Bennett 2003). Although, in principle,
this minimum should be reachable, current
computing devices are a great deal less efficient
in the amount of energy they dissipate.

The energy used by a computing device is
the product of average power drawn and the
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computation time. This relationship suggests two
ways of reducing the energy consumption: Using
lower-power technologies (e.g., Jaberipur et al.
2018) and using faster algorithms. Use of faster
algorithms is, of course, highly desirable, as it
has performance implications as well. So, there
is a great deal of ongoing research to find ever-
faster algorithms for computational problems of
interest. Power consumption per device has been
going down due to Dennard scaling, a law de-
vised in 1974 that maintains the relative con-
stancy of MOSFET power density, as transistors
get smaller, a trend predicted by Moore’s law
(Brock and Moore 2006; McMenamin 2013).

The power dissipated by computing devices
consists of static and dynamic components. Static
power is the power used by devices that are in
the off state and ideally should not be drawing
any power; however, leakage and other factors
lead to some power waste, which is increasing
in significance as we use smaller and denser
circuits. Dynamic power (Benini et al. 2001) is
proportional to the operating voltage squared, the
operating frequency, circuit capacitance, and ac-
tivity (prevalence of signal-value changes). Low-
voltage circuits use much less power, but the
closer we get to the threshold voltage, the slower
and less reliable circuit operation becomes (Kaul
et al. 2012). Thus, there is a limit to power
savings by reducing the operating voltage.

Reasons for energy waste include glitching
(Devadas et al. 1992), unnecessary signal-value
transitions that can be avoided by suitable encod-
ings (e.g., Musoll et al. 1998), and not clocking
the circuitry that is not involved in performing
useful computations (Wu et al. 2000). Practical
notions in this regard include energy-proportional
computing, that is, the desirable property that the
energy used is commensurate with the amount
of useful work performed (Barroso and Holzle
2007), and dynamic frequency AND/OR voltage
scaling (Nakai et al. 2005) in an effort to save
energy when application requirements do not
demand the highest performance level.

A data center’s energy efficiency is influenced
by three factors attributed to the facility, server
conversion efficiency, and efficiency at the level
of circuits and devices (Barroso et al. 2013). Only

about a third of the energy is used for productive
computation (Holzle 2017). Generally speaking,
large-scale installations provide more opportuni-
ties for energy fine-tuning, thus underlining the
importance of data centers and cloud-computing
in handling big-data loads. More on this later.

Near-Threshold Multi-core
Computing

Parallel processing is nearly a necessity for han-
dling of large data volumes, on performance
grounds. It is also helpful for reducing power con-
sumption. Using m processors/cores, each with
1/m the speed, is more energy-efficient than using
a single high-performance processor. Thus, if an
application offers enough parallelism to use mul-
tiple processors/cores efficiently, it will lead to
higher performance AND/OR lower energy con-
sumption. Beginning with dual-core chips in the
mid-2000s, multi-core chips (Gepner and Kowa-
lik 2006) have allowed performance scaling to
continue unabated, despite Moore’s Law, in its
original formulation, becoming invalid (Mack
2011).

While use of a large number of simple cores
carries energy-efficiency benefits, one must
also pay attention to the effect of inherently
sequential parts of a computation which give
rise to speedup limits predicted by Amdahl’s
law (Parhami 1999). Perhaps a judicious mix
of powerful or “brawny” and simple or “wimpy”
cores (Holzle 2010) in a multi-core chip, possibly
also including application-specific performance
boosters (Hardavellas et al. 2011), can help
mitigate this problem.

The ultimate in energy efficiency is achieved
when the processors/cores operate very near
the threshold voltage (Dreslinski et al. 2010;
Gautschi 2017; Hubner and Silano 2016). As
operating voltage is scaled down, performance
is reduced nearly linearly, whereas active energy
dissipation goes down quadratically. Therefore,
performance per unit of energy improves. When
the static or leakage power is taken into account,
the savings become less pronounced but still
significant. Near-threshold computing has pitfalls



in terms of computation stability and system
reliability, so there is a sensitive trade-off to be
performed. There is also the issue of giving up
too much in sequential performance in the hopes
of regaining some of it via parallel processing
(Mudge and Holzle 2010).

Memory/Storage Energy
Requirements

Dynamic random-access memory (DRAM) chips
account for a significant fraction of the power
used in a computer’s electronic parts. Static RAM
(SRAM) is even more energy-intensive, but be-
cause SRAM sizes tend to be relatively much
smaller, they do not contribute as much to the
energy budget of a system. Precise modeling of
DRAM energy consumption has been attempted
in an effort to determine the exact share of power
used; importance of power dissipation within the
memory cells vs. peripheral circuitry for decod-
ing, access, and content refreshing; and expected
changes as DRAM technology is scaled down
and goes through other generational changes (Vo-
gelsang 2010). These methods will guide energy
reduction in main memories in the near future.
For the longer term, a variety of main mem-
ory technologies, some of which enable inher-
ently lower-power operation, are being investi-
gated (Xie 2011).

Disk memories are both slow and energy-
intensive but have the advantage of permanence,
low cost per bit, and nonvolatility. For small to
modest memory sizes, replacement of disks with
solid-state memories is feasible, but for very large
data volumes, such a replacement is still imprac-
tically expensive. So, in the short term, we have
to live with disk memory shortcomings. Even
though a single disk unit has a long mean time to
failure (MTTF), when many thousands of disks
are involved in a storage warehouse, failures are
inevitable. Modern data storage facilities make
use of redundant arrays of independent disks,
RAID for short (Schroeder and Gibson 2007), to
mitigate the slowness and low reliability of disk
units. A variety of methods have been devised to
make disk memories and attendant units, such as
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disk caches and RAID controllers, that make a
disk array look like a single disk and reconstruct
damaged or lost data upon disk failures, more
energy-efficient (Pinheiro and Bianchini 2014).

As storage devices are increasingly networked
to gain the reliability, availability, and scale ben-
efits of distributed access, communication over-
head and its attendant energy requirements must
be factored in when comparing different organi-
zations with regard to energy efficiency.

Communication Energy
Requirements

Like computation and storage, communication
also dissipates energy. In fact, one of the most
challenging aspects of managing big-data appli-
cations is to decide how the energy budget should
be allocated to the three aspects of computing,
storage, and communication. Data replication of-
ten reduces communication costs during access
but may impose a nontrivial overhead for keep-
ing replicas consistent, and storage of previously
computed results may obviate the need for re-
computation.

Reducing communication costs has been stud-
ied extensively in connection with energy-limited
mobile and sensor networks (Heinzelman et al.
2000), but many of the techniques are applicable
more broadly. For example, expending local com-
putation to aggregating data before transmitting
a smaller volume of data is a generally useful
method (Krishnamachari et al. 2002).

Given their current prevalence and future im-
portance, energy efficiency consideration for on-
chip networks and those used in data centers
are of paramount importance. Networks-on-chip
(Benini and De Micheli 2002; Pande et al. 2005)
are key components of modern multi-core chips,
and their importance will increase as the number
of cores is scaled up. Data-center networks have
been subjects of numerous studies, given their
role in the energy costs of a typical data cen-
ter (Hammadi and Mhamdi 2014). One example
consists of the proposal for energy-proportional
data-center networks (Abts et al. 2010).
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Beyond networks-on-chip and data-center net-
works, we must also be concerned with energy
efficiency in broad-area networks, the Internet in
particular (Bolla et al. 2011). Whereas the intro-
duction of low-power techniques in the design of
routers and other electronic units is necessary for
energy-efficient networking, it is not enough. We
also need energy savings at the physical network
layer and in the algorithms and protocols used
for computation, routing, resource management,
testing, and fault tolerance.

Energy Considerations in the Cloud

The cloud consists of computational, storage, and
communication resources. Yet, to achieve energy
efficiency in the cloud, we must go beyond sepa-
rate energy optimizations for the aforementioned
components. Such optimizations are challenging,
given the scale of the cloud (Assuncao et al.
2015; Feller et al. 2015). As of 2017, servers
collectively use about 200 TWh of energy, which
is comparable to energy use in all of Mexico.
Google alone uses as much energy as the city
of San Francisco. As large as this value is, it is
dwarfed compared with the energy required by
users’ laptops or other computing equipment at
the edges of the cloud.

As for the energy used in data-center instal-
lations, it consisted until fairly recently of three
nearly equal parts devoted to mechanical cool-
ing, IT equipment, and everything else (lighting,
backup power supply, etc.). So, the energy used
for the actual computation was multiplied by a
factor of 3.0, implying a 200% overhead. More
efficient modern data centers reduced this factor
to 1.8, for an overhead of 80%. Now, we can
go as low as 10% overhead through a variety of
energy-saving schemes, including the application
of machine learning to adjust a building’s cooling
strategy based on information about the applica-
ble parameters (Holzle 2017).

Servers have undergone similar efficiency im-
provements. Earlier, some 50% of energy went
to waste, even before power got to the actual
circuits. By eliminating this waste, we are now at
about 10% overhead relative to the actual energy

used by the circuits. The circuit energy has been
going down by 20% per year in recent years
(post-Moore’s Law era). Factors leading to this
reduction are smaller circuits, clock-gating (dis-
abling the parts of the circuits not in use, so that
they don’t draw energy), frequency scaling, and
specialization (tailoring the circuits to computa-
tions). In the latter domain, Google’s hardware
optimized for machine learning uses 0.2 MW
of power, compared with 2.5 MW needed by a
general-purpose supercomputer doing the same
job (Holzle 2017).

As a whole, the IT industry uses about 2%
of the world’s energy, which is of the same
order as the amount used by airlines. Because
modern data centers are way more efficient than
local server installations, moving to the cloud
will reduce the energy consumption associated
with computations by some 87%. Operating data
centers with exclusive use of renewable energy
is now possible, which constitutes a major ben-
efit. The lower hardware redundancy needed to
ensure reliable operation also saves energy. For
example, Gmail uses 1% redundancy in hard-
ware resources, whereas a typical local e-mail
server installation needs at least duplication to
avoid service disruptions. This makes the user-
side energy consumption even more important.
Fortunately, with the move away from desktops
and laptops to tablets and smartphones, user-side
energy consumption is also plummeting.

Future Directions

Work in proceeding in improving energy effi-
ciency in all aspects of the big-data environment
discussed in the preceding sections. At the circuit
and chip levels, ultralow-power technologies are
being devised and evaluated. Examples are found
in the fields of optical, biologically inspired,
adiabatic, and reversible circuits. The ultimate
goal might be doing away with batteries and other
power sources altogether (Eisenberg 2010), for a
large fraction of the big-data ecosystem. Signifi-
cant reduction in the dissipated energy will also
obviate the need for complex cooling strategies



and their associated hardware and software costs
(Kaushik and Nahrstedt 2012).

The future of big data is closely tied to the
future of cloud computing, as the economy of
scale provided by the cloud is necessary for the
successful deployment of big-data applications
(Hashem et al. 2015; Wu et al. 2013). A promis-
ing direction in energy monitoring and optimiza-
tion, with no need for human intervention, is the
use of machine learning strategies. Such tech-
niques have already been applied to power man-
agement at the circuit level (Dhiman and Rosing
2006) and to data-center climate control systems
(Holzle 2017), but a great deal more can be done.
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