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Abstract—The human brain as a platform for number 
representation and arithmetic is a complex system that involves a 
large bilateral network spanning multiple aspects of cognition. 
Numbers are encoded in the so-called “triple code” that entails 
verbal, quantitative, and written forms. A healthy individual’s 
brain typically activates these regions in various capacities when 
performing calculations with multiplication vs. addition, exact 
computation vs. approximation, and large vs. small operands. In 
comparison to artificial systems, a human brain is likely to rely 
more on memorization than counting or sequential arithmetic. 
This review is motivated by the fact that all the attributes just cited 
hold potentially valuable lessons for computer engineers aiming 
for compact, efficient, and energy-frugal system design. 
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I. INTRODUCTION 

Numeracy is generally considered a basic capacity of the 
human brain [1]. Our brain has dedicated circuitry for 
recognizing the number of objects in a set and for providing us 
with the intuition needed to acquire formal arithmetic [2]. As 
computer engineering researchers, we are motivated to 
understand how the brain represents and processes numbers, in 
case there are lessons to learn and methods to scrounge in 
building compact, algorithmically-efficient, and energy-frugal 
computing systems. Neurons are known to be much slower, but 
orders of magnitude more energy-efficient, than state-of-the-art 
digital circuits. We also know that lower-speed digital logic 
consumes less energy. So, there may indeed be lessons for us in 
the brain’s computational scheme, a key motivating factor for 
the emerging field of neuromorphic computing [3]. 

Human brain activity when it is engaged in arithmetic tasks 
is directly linked to the general computational abilities of a 
subject [4]. So, an understanding of such activities can lead not 
only to smarter, more capable computers but also to practical 
strategies for improving the computational performance of 
humans or human-machine combinations. It isn’t out of the 
question that a flow of methods in the reverse direction can be 

established to improve the performance of the human brain 
based on computational strategies borrowed from digital and 
analog electronics. 

A first order of business is to consider what has been called 
“number sense,” that is, a basic ability—one that is innate and 
not developed by mathematical training—to conceptualize and 
manipulate numerical quantities [5], [6]. Therefore, we expect 
number sense to be a very common quality in neural 
development. If humans have some genetic predisposition for 
mathematical ability, then other animals should have some 
traces of it as well [7] [8] [9], and, surely enough, the presence 
of basic arithmetic ability and number sense has been verified 
experimentally in many other animals, including pigeons, rats, 
dolphins, and, of course, non-human primates [5]. 

A good review of experiments designed to chronologically 
map the development of mathematical abilities in preverbal 
infants is given by Dehaene [5]. The studies discussed in this 
collection present auditory and visual stimuli to infants, 
reporting variations in attention by monitoring changes in the 
directions in which they look and the times when they look in a 
given direction. In one experiment that tested infants’ evaluation 
of mathematical statements like 1 + 1 = 2, for example, single 
objects were presented in turn and moved out of sight, leading 
to infants expressing surprise when a different number of objects 
was retrieved [5] [6] [10]. Not only do these kinds of 
experiments indicate that infants have a degree of number sense 
similar to that found in other animals, but they also imply that 
number sense may have a role in object permanence. 

Number sense is what allows us to understand 
approximations, perform numerical comparisons (few vs. 
many), and count small discrete values. In animals, this counting 
ability is believed to be favorable to evolution, because it may 
allow animals to track the number of predators around, as well 
as help animals in groups determine whether an enemy group is 
small enough to conquer [6] [7]. Overall, elementary 
mathematical abilities innate to other animals are similar to 
human abilities at the infant stages. Because of this 
correspondence, we focus on number representation and 
arithmetic in the human brain. 



Much research has been done on the representation of 
numbers and performance of arithmetic operations in the human 
brain. In parallel, novel number representation schemes 
constitute an active area of research in digital computer 
arithmetic [11]. In this paper, our focus is on explaining key 
elements whose understanding opens up the subject matter, 
provides the needed nomenclature for discussion, and allows us 
to pursue more details, as needed. These elements are discussed 
in Sections II-VIII of the paper, with conclusions, including 
brief mentions of the current limits of our understanding along 
with open problems, presented in Section IX. 

II. SENSE OF SMALL NUMBERS 

Looking at two apples on one side and three oranges on the 
other, we immediately recognize the different cardinalities of the 
two sets, without thinking. The effortless recognition of small 
numbers in an exact way extends perhaps to half-dozen, and to 
a couple-dozen with less accuracy. This sense is what enables a 
grocery-store clerk to quickly determine whether the number of 
items in a shopping cart might exceed the limit for express 
checkout, without actually counting. Numeric abilities of 
individuals may differ based on experience and training, but the 
pertinent parameters are always in the same ballpark. 

This instinctive ability originates from dedicated circuits in 
the brain. A small area deals with numerosity, that is, 
determination of a set’s size, along a continuous map, much like 
the maps for more fundamental or basic senses [12]. Abstract, 
higher-level cognitive functions typically do not have built-in 
maps, so numerosity is a baser, intuitive sense. It is believed that 
one side of this mapped region is devoted to small numbers and 
an adjacent region to larger numbers, with an increasingly 
sparser mapping to this region as the number value grows. 

Recognition of small numbers is accomplished by single-
neuron sites in the prefrontal cortex and a couple of other regions 
associated with mathematical processing [13]. So, if a subject is 
shown three dots on a single sheet of paper, or three sheets of 
paper, each bearing a single dot, in rapid succession, neurons 
associated with the concept of “3” light up. These specialized 
neurons will fire strongly when their specific number is 
encountered; they exhibit weaker firings for nearby numbers 
(Fig. 1). So, the sense of small numbers in the brain, while exact 
as far as perception is concerned, has a kind of fuzziness [14] at 
the neural-activity and signaling level. 

 

 
Fig. 1. Neural firing activity for small numbers. 

The existence of words for small numbers in ancient 
languages that were in use long before formal mathematics was 
developed confirms that small numbers have innate 
representations in our brain; how linguistics helps with the study 
of various branches of science is a fascinating story! The 
hypothesis that only small numbers have direct brain circuits is 
strengthened by the fact that several known ancient languages 
had words only for very small numbers [15] or no specific 
number words at all, just words for “a few” and “some”—the 
so-called “anumeric languages” [16] 

III. LARGE NUMBERS AND SCALE 

As mentioned in Section II, the brain map region enabling 
numerosity devotes less area to numbers as they grow larger.  
This is in line with the idea that without mathematical training 
the brain uses a logarithmic scale for numbers [9] [10] [17], 
known as the Weber-Fechner Law [18]. Logarithmic number 
representation in the brain results in improved speed and 
precision with smaller numbers and, more generally, it is 
naturally efficient and robust, leading to a broad range of 
applications in computing [19], besides its use in the brain. 

Even though our sense of numbers is intrinsically 
logarithmic, over time, we develop the skill of visualizing the 
number line in linear form. Both logarithmic and linear 
visualizations help in comparing numbers, getting a sense of 
their scales, and doing mental arithmetic on them [6] [20]. With 
the logarithmic scale, each doubling in the number’s value 
moves us a fixed distance to the right on the number line, thus 
helping in the visualization of relative magnitudes. The linear 
scale is more useful in visualizing absolute differences (Fig. 2). 

In addition to this physical representation, it is theorized that 
humans internally encode numerical quantities alongside their 
Arabic digit numerals and their verbal equivalents. The three 
types of encoding make up what is known as the triple-code [7] 
and contribute to highly-interconnected and partially-robust 
numerical profiles in the human brain. 

The locality of cortical activity varies for different 
operations (addition versus multiplication), small (~ 1-5) or 
large (typically > 5) quantities, and exact or approximate 
calculations. Exact calculations are those whose output requires 
full evaluation to verify correctness. Usually this type of 
calculation is performed to gather evidence of the size effect. For 
example, a statement such as 19 + 18 ?= 37 or ?= 39 might be 
presented, and a participating individual asked to choose the 
correct answer. On the other hand, approximate calculations are 
defined to be computations whose answers are chosen based on 
their closeness to the approximate real answer. For instance, if 
19 + 18 ?= 250 is presented, the participant easily rejects it as 
false, without evaluating the exact answer, given the large 
distance between the operands and result. 

 

 
Fig. 2. Logarithmic and linear number lines. 



That the brain takes more time to verify exact calculations 
whose supplied potential answers have shorter distance between 
them, like 37 and 39, is well-established. The phenomenon is 
fittingly called the distance effect, and the tests used in exact and 
approximate computation are appropriate for observing it across 
addition, subtraction, and multiplication operations. Another 
limitation to computation speed is known as “the size effect,” 
which suggests that arithmetic or comparisons with larger 
operands are more prone to errors [5]. 

Some experiments have been performed to observe whether 
additional approximate strategies, such as the odd-even rule in 
addition, can be used to speed up calculations [21]. But we must 
look at neural activation patterns and the organization of 
numbers in the brain to better understand the methods employed 
during computation. 

IV. BRAIN’S ARITHMETIC REGIONS 

As evidenced by studies of the distance effect, our brain 
distinguishes large numerical differences quite easily, such as 
that between 50 and 500 represented as sets of dots. However, 
this innate ability must be augmented with symbolic 
representation and processing abilities in order to distinguish, 
say, 50 from 55. 

To understand the mathematical abilities in humans, we can 
disregard much of the brain activity dedicated to other 
autonomous and sensory processing tasks, including activity in 
the pituitary gland, auditory lobes, and so on. Still, quite a few 
brain areas call for closer study, because arithmetic and number 
processing entail a highly-integrated neural network within the 
human brain (Fig. 3). In fact, this network extends across 
cerebral areas used in language processing and spatial reasoning, 
among others [22]. 

Activation of neural subnetworks and neighboring cortical 
areas depends primarily on the calculation type, whether it’s 
exact or approximate, as well as the operation, and the size of 
and relative distance between the operands. The extent of 
integration of mathematical ability in the brain is typified by the 
observation that, upon the presentation of numbers, other 
arithmetic facts like the sum and product are autonomously 
activated—a process known as obligatory activation [23]. This 
activation suggests that certain calculations, like multiplication 
tables, are memorized [6] [7] [24]. 

 

 
Fig. 3. Brain areas linked to numbers and arithmetic [25]. 

The memorization of arithmetic facts is tightly integrated 
with language processing—that is, through numerical storage in 
verbal and written or symbolic memory locations. Numbers are 
likely encoded in these locations in the language in which they 
were first learned. From this perspective, it is the case that 
bilinguals will perform computations slower if the numbers are 
presented in their non-primary language [6] [24] [26]. However, 
the triple-code encoding abstraction of the connection between 
mathematical facts and language in the brain is superficial. On a 
deeper level, the storage of numerical facts is chosen closely to 
language due to the proximity of the cortical areas activated in 
arithmetic to Wernicke’s area, the region responsible for 
language comprehension. 

Near Wernicke’s area is the intraparietal sulcus (Fig. 3), 
likely responsible for mathematical processing [6] [7] [18] [22]. 
Broca’s area, responsible for speech formation, is nearby. 
However, as mentioned previously, mathematical processing is 
not limited to one region of the brain. In both addition and 
multiplication operations, activation of the intraparietal sulcus is 
commonly observed [6] [7] [18], but other related areas also 
activate depending on the size of the operands and precision of 
the calculation. 

In general, the parietal lobe activates during approximate 
calculations or those with large operands, while the prefrontal 
cortex activates during exact calculations [5] [10] [18] [22]. In 
calculations with larger numbers, or more complicated 
arithmetic demanding exact results, both regions show greater 
activation [22]. The entire mathematical network that forms the 
basis for the triple-code theory (that numbers are stored in 
quantitative, verbal, and symbolic forms) are spread out and 
overlap other areas involved in cognitive activity [27]. This 
includes the area responsible for verbal numerical 
representation, which is close to Wernicke’s area and Broca’s 
area [5] [22]. Both areas are used in language development and 
complicated verbal computational tasks, and are known to 
activate for word-based arithmetic problems. 

V. BRAIN’S COMPUTATIONAL ARCHITECTURE 

Despite their extensive connections, the networks 
responsible for numeracy are not symmetric in the human brain 
with respect to cerebral hemispheres. Networks responsible for 
magnitude representation and number comparison are located in 
the prefrontal cortex and are common to both hemispheres. 
Visual encoding of numbers is stored in the angular gyrus, near 
the parietal and occipital lobes, and is also common to both 
hemispheres. Each of these areas communicates to each of the 
other areas and also engages in bilateral hemispheric activity. 
However, the verbal encoding and storage of arithmetic facts is 
only unilateral, even though it communicates with the other 
areas [5] [22]. Much detail provided in the cited references has 
been omitted here for brevity. 

Equipped with the triple code, we can now use our working 
knowledge of the human brain’s interconnectedness to 
understand the brain as an architecture. Encoding numbers and 
arithmetic facts in three separate but coupled formats in a noisy 
biological environment is somewhat prone to calculation-
specific errors. We will now consider the types of errors incurred 
during mathematical computation, and discuss how they may 
manifest as an artefact of the architecture. 



 
Fig. 4. Mental arithmetic for single-digit addition [21]. 

It has been shown that quantity magnitude errors are the 
dominant source of errors during nonverbal quantity estimation, 
and not errors due to relative difference between quantities [26]. 
This, in effect, states that the size effect is more likely to incur 
computational error over the distance effect. There is evidence 
that latency of and errors in exact verbal calculation also 
increase in the case of some multiplications whose results are 
considered “close” to each other [5] [20] [24]. As an example, 
take the statements 7 × 8 = 56 and 7 × 8 = 63. Though the result 
of the second is incorrect, the multiplicands that would yield the 
result 63 are close to the supplied multiplicands, and thus the 
rejection of the second statement may be slower or the process 
more prone to error. In a way, we might supplement this 
example by providing an analogy to electronics, and state that 
the small cerebral locality in which the multiplication table is 
stored, along with the size effect between numbers 7, 8, and 9, 
contributes to a highly noisy readout [26]. 

Interestingly, delays in solving arithmetic in the human brain 
tend to increase when a carry operation is involved in the case 
of addition of two numbers [21]. As shown in Fig. 4, which 
depicts the addition latency with different addends, the latency 
is greatest when one addend is 9, which is guaranteed to generate 
a carry if the second addend is nonzero. 

VI. BRAIN VS. NEURAL NETWORKS 

Though the errors mentioned in Section V seem costly to any 
digital system, they can often be circumvented to some degree 
with additional mathematical training. In healthy individuals, we 
may consider arithmetic ability to be consistent on average, 
disregarding exceptional training in select people [5]. 
Calculating ability varies by age, as well. For example, infants 
tend to perform addition using counting methods, while adults 
tend to rely on memorization [20] [24]. In analogy to 
conventional logic, counting maybe viewed as an add-one 
methodology and memory access as table lookup. 

Artificial systems (artificial neurons, in particular) perform 
arithmetic quite differently [28]. Neural networks still often rely 
on logic schemes with a fairly constrained set of inputs 
compared to a biological neuron with many more dendritic 
synapses. But the most important difference is that artificial 
systems are a projection of analog computation onto a level- or 
spike-based voltage domain. This on its own implies an extreme 
reduction in dimensionality, given that the chemical-based 
information exchanges in the neuron are lost; however there 
have been significant efforts to create brain-like systems with 
high connection density and throughput in CMOS. 

Pioneering neuromorphic-computing projects include 
IBM’s TrueNorth, Stanford’s Neurogrid, BrainScaleS, and 
SpiNNaker, which use techniques ranging from real-time 
modeling to object recognition and robotic control [3]. They are 
all VLSI-based and, by conventional definition of neuromorphic 
computing, use some electronic representation of the biological 
neuron as the fundamental circuit element. At least for the 
neuromorphic computing examples referenced here, the theme 
of neuromorphic computers is akin to distributed computing 
with high inter-module connectivity. This essentially mimics, in 
two dimensions, the brain’s three-dimensional construction. 

Limitations of artificial circuits include power delivery and 
cooling, as well as multi-layer scaling. Resolving these issues, 
perhaps through sub-threshold transistors, may open the way to 
further progress. While modern FPGAs allow reasonably 
capable implementations [29], the eventual solution may entail 
something unexpected, like a chemical medium, with artificial 
neurons encased in power delivery “membranes.” 

In artificial perceptrons, inputs are weighted and tallied, and 
the perceptron fires when the tally exceeds its built-in threshold. 
Adders can be built from threshold networks with suitable 
connections and weights [30]. Though closer to the biological 
version than the CMOS-logic realization, such an adder still falls 
short. For instance, if addition is most-likely performed by 
memorization, then the choice to use sequential circuits is totally 
wrong if we want to mimic the human brain. 

Up to now, we have remained at the architectural level in 
discussing arithmetic in the human brain. Let’s take a brief look 
at a signal-based analysis, leaving a more detailed investigation 
to future work. If we assume a rate-encoding-like 
communication scheme as in the firing of sensory variables, we 
can take on a different logic scheme that appears to be more 
realistic in emulating brain-like computation [31] [32]. 
Arithmetic can transform pulse streams by excitation, which 
speeds up the firing rate, or by inhibition, which slows the rate. 
One potential drawback to high-speed firing rate in CMOS 
technology, however, is an increased failure rate and therefore a 
need for greater component redundancy. 

Performance-wise, neuromorphic computers and artificial 
computational elements tend to favor speed and low-noise 
environments over power and efficiency, while biological 
systems make the reverse trade-off. These key design 
differences should be considered if an artificial copy of the 
brain’s architecture is the design goal. To better understand how 
such a copy might operate, however, we must look at the 
interface between the structure that transmits information and 
how that information is interpreted. 



VII. ANALOG, DIGITAL, OR HYBRID? 

While it is common to think of the human brain as an analog 
computer [33], whether it is more analog or digital is still 
debated [34]. However, the use of some form of hybrid analog-
digital processing in the human brain is hinted at by Fig. 2. From 
an algorithmic perspective, residue number systems (RNS) have 
parallels in biological computation. For example, rats have very 
strong homing instincts that enable them to quickly return to 
their nests even in the dark by finding the shortest path [35]. It 
is postulated that their homing instincts may be bolstered by the 
formation of a spatial grid in which they orient themselves [36]. 
When using continuous digit-RNS (CD-RNS) as a model for 
localization in such a grid, transformative operations like 
addition and multiplication become easy [35]. The dynamic 
range—or number of uniquely expressible numerical values—
becomes a critical point of discussion for maximum grid size 
and desired errors. It is possible that evolution may have won 
low error rates in this encoding as well as optimized values to 
maximize the dynamic range. In this aspect, some similar 
number system used for spatial orientation is likely to exist in 
the brains of other species, including humans. 

Continuing the discussion of spatial reasoning in humans, 
consider, as an example, object recognition after 3D rotation. In 
digital systems, this computation is complicated and involves 
calculating all possible rotational transformations and 
performing comparisons; in the human brain this problem 
becomes less mathematically rigorous and likely dependent 
instead on the ability to mentally “rotate” the object [33]. In such 
applications, human brain’s computational procedure may be 
more-aptly characterized as analog. 

There is evidence that the brain also exhibits digital 
behavior. According to Weber’s Law, for any stimulus—like 
ambient temperature or weight carried—the just-noticeable 
difference (JND), or the minimum detectable change, is a 
discrete step that is linearly proportional to the reference [34]. In 
this regard, we can also recognize the brain as being at least 
partially digital. It is likely that the brain has developed as a 
synthesis of application-optimized logic choices. 

Moreover, in designing brain-like systems, it is important to 
remember that Boolean arithmetic, whether based on stable 
voltage levels or transient spikes, is just an abstraction: a digital 
projection of the brain’s analog signaling onto a digital domain. 
Certain logic schemes, such as race logic, can act as a 
supplement to spike-based computing [32] and provide useful 
benchmarks for comparison to biologically-inspired logic 
domains [37]. Such logic schemes imitate the transient nature of 
the brain more directly, but spike-based systems may be more 
error-prone in highly-noisy biological systems like the brain. For 
this reason, additional processing is needed. 

VIII. ROBUSTNESS AND ERROR-HANDLING 

Given the high noise in biological systems, error detection 
and correction are critical. In Section III, we discussed the 
limitations of number sense as an innate ability. Arithmetic with 
small numbers that fall within the mathematical bounds of this 
sense are generally error-tolerant, but for numbers outside the 
bounds, computations—and the potential for errors—become 
subject to the size effect and distance effect. While the size effect 

identifies increasing computational error with the growth in 
operand value, the distance effect describes the growth in error 
as the quantitative distance between operands shrinks [38]. 

Importantly, both of these error sources are observed in 
humans, infants, and other animals, supporting the theory that 
number sense has been hard-wired in us through evolution. 

To some extent, the brain implements its own self-checking 
measures to counteract computational errors. In multiplication, 
for example, the brain rejects false mathematical statements 
~115 ms faster if the result is not a multiple of either operand 
(for example, 5 × 7 = 29) compared to the case when the result 
divides one of the operands (5 × 7 = 30). The odd-even rule may 
additionally help weed out incorrect results more quickly [21]. 
In addition to some ability for error-checking, the brain has some 
redundancy, exemplified by its semi-tolerance to physical 
damage by injury or exceptional conditions. 

Patients with cerebral conditions that affect the network 
described in Section IV still retain some arithmetic ability in 
quite a few studied cases [5] [22] [39]. Acalculia tends to result 
from lesions in the intraparietal or angular gyrus regions, where 
number manipulation is predominantly performed. However, 
patients with acalculia can still retain verbal number sense, 
especially with regard to memorization, as in multiplication 
tables [22]. Similar instances of selective retention of arithmetic 
ability have been observed in patients with related conditions 
like dyscalculia, aphasia, and cerebral lesions symptomatic of 
diseases like Gerstmann syndrome [7] [22] [24]. 

Architectural redundancy in artificial systems and networks 
is accomplished in some cases by adding spares. In contrast, the 
human brain does not have spare lobes to swap in when one 
becomes defective, even though, in the case of lesions or other 
conditions that make certain areas of the cerebral network 
unusable, there are other encoded versions of related data that 
are still accessible. In the latter case, there is still data and 
performance loss; in the former, typically no data or 
performance loss. One might say that the brain’s robustness and 
error-handling features resemble those of distributed computing 
systems, which use task reassignment and load-balancing to 
overcome the effects of resource fluctuations. 

IX. CONCLUSION 

Our discussion in this paper is intended to serve as a review 
of existing literature, in an attempt to uncover a holistic view of 
arithmetic capabilities in the human brain. We discussed number 
sense and encoding, and the regions of the brain most likely 
involved in mathematical processing. We also reviewed the size 
and distance effects and how they alter the processing latency 
and the likelihood of computational errors. 

Computer architects and engineers often think about brain-
based computation in terms of artificial neural networks. 
However, such artificial systems do not yet capture the 
complexity and efficiency of the human brain. Improving our 
understanding at the system level will allow us to build general 
brain-like structures or interfaces, with the intent to derive more-
efficient and energy-frugal hardware systems and to develop 
effective cures for diseases or conditions, including acalculia 
and aphasia, that inhibit or limit brain function. 



This review is useful for the sake of designing highly-
scalable brain-like computing systems, but it is also critical as a 
stepping stone for making brain-computing interfaces feasible 
for the regions of the brain that control mathematical ability 
[40]. Even though limits of our understanding of the human 
brain abound, we can still learn from existing data to inspire the 
design of neuromorphic circuits with better likeness to their 
biological counterparts, greater energy-efficiency, and so on. 

Much study and analysis remain to be done to create a full 
picture of arithmetic in the human brain. For example, one 
aspect that is missing in this paper is the signal-processing 
component, that is, the transformation of encoded neuronal 
firing sequences in the human brain from equivalently-valued 
input pulses to output arithmetic results. An analysis of 
biological neural connectivity for computational network-
building, similar to Cannas’ artificial network presentation [30], 
is also missing, and should be addressed in future work. 

A number of other details need to be added to this discussion, 
including challenges in scaling existing CMOS neuromorphic 
solutions, given that we are currently limited in connectivity 
with model neurons and a biological brain “replica” is not 
feasible. Furthermore, there is evidence that mathematical 
training changes the neural pathways and regional activations 
associated with arithmetic, which adds a new evolutionary 
dimension to future research in this area [41]. 
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