THE CONCEPT OF SELF-CHECKING PROGRAMS

Behrooz Parhami
Arya-Mehr University of Technology

Tehran,

It is a known fact that digital logic circuits can be
designed to be self-checking or fault-secure with res-
pect to a class of hardware failures; i.e., such that
internal failures either do not affect the circuit's
behavior or are detectable by external checkers. The
same idea can be applied to redundant programs through
definition of a suitable class of program faults and
derivation of a set of synthesis rules.

In this note, we consider a technique for making FORTRAN
programs self-checking with respect to hardware or
software faults affecting only a single source program
statement, These include insertion, deletion, erroneous
representation, or misinterpretation of a single program
statement. Our discussion will be limited to statement-
level redundancy although in many cases the self-check-
ing property may also be provided through functional
checks (e.g., checking of matrix inversion through sub-
sequent matrix multiplicaticn).

A subset of FORTRAN in teims of statement types is con-
sidered here. The allowed statement types and their
self-checking replacements are given in the following
table. In studying the table, these points must be
taken into account:

(1) The original variable names are shorter than the
system's limit and do not end with a numeral. This
simplifies forming unique names for redundant check
variables by adding a numeral to the end of an existing
name.

(2) Statement numbers are also short and do not end in
9 so that adding a 9 to the end of each results in a
new unique statement number.

(3) The statement number ¢ denotes the start of an
error-handling routine., This routine need not be re-
dundant as it is used only when it is known to be fault-
free; i.e., when some other fault is present.

(4)" PROGRAM and END statements are left unchanged since
an error in these statements is either corrected by the
compiler or results in appropriate diagnostic message.

(5) All forms of control transfer are checked by setting
up a check variable before the transfer statement and
subsequently comparing its value with a check constant
at the jump target.

(6) Errors in all forms of conditional transfers are
avoided by checking the conditions twice before the
actual transfer can take place.

(7) Several types of checking are required for DO loops.
The value of loop index is checked immediately after
entering the loop and in the start of each subsequent
iteration. The terminating statement number is changed
so that the replaced loop does not end in a transfer
statement (also see CONTINUE).

(8) It is assumed that each loop ends with its own
CONTINUE statement, Proper termination of the loop is
checked by comparing the final value of loop index with
the loop parameters stored in auxiliary variables.

Many other statement types such as arithmetie IF and
computed GO TO can be easily dealt with. But FUNCTION,
SUBROUTINE, and CALL need more detailed considerations
which are beyond the scope of this note. The cost of
making programs self-checking is a more than threefold
increase in program size and only slightly less redun-
dancy in execution time.

Iran

Example of Statement Self-Checking'Replacement* Note

INTEGER X,X1,Y(8),Y1(8)
INTEGER X,X1,Y(8),Y1(8)

X=Y (4)+X**TA 1
X1=Y1(4)+X1**TAL
IF(X .NE. X1) GO TO €

INTEGER X,Y(8)

X=Y (4)+X**TA

GO TO 5

L5=5
GO TO 5
GO TO 5
5 any statement L5=5 . 2
5 IF(L5 .NE. 5) GO TO =
L5=0
eelf-checking replocement
READ 6,X,Y(4) READ 6,X,Y(4) 3
READ 69,X1,Y1(4)
6 FORMAT(10x,14,I8) 6 FORMAT(10X,14,18)
69 FORMAT(10X,I4,18)
IF(X .GT. Y)GO TO 5 - Lo=a) 4
IF(.NOT.(X.GT.Y))GO TO o
L3=5
IF(X1 .GT. Y1)GO TG 5
a IF(La .MNE. «)GO TO €
La=0 ;
IF(X1 .GT. Y1)GO TO ¢
D0 7 I=mynm,k N7=n 5
K7=k
M7=m-k
J7=M7
DO 79 I=m,n,k
IF(I .NE. (M7+k))GO 70 ¢
IFfJ7 .NE. M7)GO TO ¢
M7=1
_ I1=I
7 CONTINUE L7=7 6
7 IF(L7 .NE. 7)G0 70 e
L7=0
79 J7=M7

IF((N7-M7).GE.K7)G0 TO €
IF(N7 .LT. M7)GO TC e

Notes on the replacement table:

(1) This is similar to subsystem duplication with output
checking in the case of hardware. The comparison state-
ment may be eliminated at the risk of missing some com-
pensating errors.

(2) We check to see if this statement is reached from a
legal path (FORMAT and CONTINUE statements are excepted).
One is not allowed as a statement number,

(3) Duplicate input and output data is assumed.

(4) We assume that a is a unique number not appearing

as a statement label anywhere else in the program. Each
such substitution results in a different value for a.

(5) Loop parameters are saved in auxiliary loop vari-
ables in order to check proper execution and termination
of the loop.

(6) We assume that the CONTIMUE statement is only used
to terminate DO loops and each DO loop has its own ter-
minating CONTINUE.

(*) No special compiler feature is assumed.

