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Abstract: Block-oriented rotating associative pro-
cessors provide a highly cost-effective solution to
the need for parallel processing of large volumes
of data in information storage and retrieval appli-
cations. Such processors are implemented by
incorporating some processing logic into each
read/write head of a fixed-head (head-per-track)
disc memory. With non-self-clocked data record-
ing, which offers higher storage densities, the usual
data storage format is to assign the fixed capacity
dictated by the maximum bit density and the
length of the innermost (shortest) track to all
tracks, thus making it possible to use a single
clock track for the synchronisation of read and
write operations. In the paper, we note that with a
single clock track about half of the total recording
capacity of the disk surface is wasted. This leads
to the proposal for dividing the tracks into
groups, with one clock track for each group. It is
shown that with optimal design, 90-95% of the
useful disk capacity can be utilised. This rep-
resents a 70-90% improvement over the case of a
single clock track and is achieved at virtually no
extra cost.

1 Introduction

Associative (content-addressable) memories and pro-
cessors [2, 4, 9] have been the subject of much study for
over three decades. However, even with recent advances
in VLSI technology the construction of a fully parallel
associative device with the capacity to hold a large data-
base is still impractical. An alternative to the fully paral-
lel approach is provided by the block-oriented
organisation [7] which can be implemented by incorpo-
rating some processing logic into each read/write head of
a fixed-head (head-per-track) disc [6]. Many such
systems have been implemented or proposed over the
past 15 years.

There are two classes of methods for storing data on
magnetic disks [1, 5]. In self-clocked schemes, the data
and timing signals are intermixed so that read/write
mechanisms can function properly without a need for
external timing control. These schemes have developed
into sophisticated run-length-limited (RLL) codes for
data recording [3, 8]. With non-self-clocked formats, an
external timer which is synchronised by timing signals
stored on a clock track provides the needed timing
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control for the read/write circuitry. These latter schemes
require fewer changes in the direction of disc surface
magnetisation and thus can support higher recording
densities. The usual arrangement for non-self-clocked
recording on fixed-head discs is to use a single clock
track, thus effectively assigning a fixed data capacity to
all tracks. This fixed capacity is dictated by the maximum
recording density and the length of the innermost
(shortest) track and is thus wasteful of space in the outer
tracks.

In this paper, we note that with a single clock track
only 50-53% of the total recording capacity of the disc
surface of a block-oriented rotating associative processor
is utilised. This leads to the proposal for dividing the
tracks into equal-capacity groups, with one clock track
for each group. It is shown that with optimal design,
90-95% of the useful disc capacity can be utilised. This
represents a 70-90% improvement over a single clock
track and is achieved at virtually no extra cost. Since in
block-oriented rotating associative processors, disc tracks
are processed independently and in parallel, they can
have arbitrary capacities. This is in contrast with applica-
tions of disc memories in general-purpose systems where
completely variable track capacities may cause difficult
memory-management problems. However, in any appli-
cation where disc blocks are accessed through direct
external pointers (e.g. paging discs) the optimal design
discussed in this paper may be applicable.

2 Notation

The following notation is used throughout this paper.
When parameters can be computed from others in a
straightforward manner, equivalent expressions are also
given. Other relationships will be explored in subsequent
sections of the paper. Fig. 1 depicts some of the param-
eters of interest.

u =unit of length used in this paper = distance
between centrelines of adjacent tracks = 1/track
density

d  =bit density/track density = number of bits that
can be recorded in unit length u (typically d > 1)

T, = ith track on a disc surface; T; is the outermost, T,
is innermost

t = number of tracks on disc surface =r, —r, + 1

r;, = integer denoting radius of ith track on disc
surface=r, —i+1

¢; = bit capacity of ith track on disc surface = 2ndr;;
we will assume that 2zd is an integer

I; = jth track group: a number of contiguous, equal-
capacity tracks sharing a clock track; I'; is outer-
most

y  =number of track groups on disc surface =

number of clock tracks

535



7; ~=number of tracks in jth track group, including
clock track (t;> 1,Y 1, 1;,=1)
p; = radius of innermost track in jth track group =r,
+1-3l1n
= bit capacity of the jth track group = 2ndpfz; — 1)
for one disc surface
C = total bit capacity of disc =) ?_, k; for one disc
surface <) !_, c; due to clock tracks
U = utilisation ratio: fraction of upper bound for total
disc recording capacity actually utilised
{...} = parameters or assumptions used in computing
preceding value; e.g. C{r, r,}, U{y: 1}

I, tracks

\‘tj tracks

T tracks

Y track groups t tracks

Fig.1
All parameters are integers

Some notation and disc parameters

In addition, the superscripts max, opt and ub identify
maximal, optimal, and upper-bound values, respectively.

3 Discs with single clock track

In this Section we try to answer the following question
for discs having a single recording surface and a single
clock track (s: 1, y:1): given a fixed outer track radius,
what is the optimal number of tracks? Intuitively, having
too few tracks will waste disc surface whereas having too
many tracks will make the innermost track very short,
thus having an adverse effect on capacity. The following
lemma gives us the optimal value fort =r, —r, + 1.

Lemma I: Given a fixed outer track radius r, and a single
clock track (hence, equal capacities for all the ¢t — 1 data
tracks), the total disc capacity is maximized when the
number of tracks and the inner track radius are chosen
to be t°7* = | r,/2] + 1 and r?"* = [r /2], respectively.

Proof: The total disc capacity is 2ndr(t — 1) = 2ndr,
(ry — r). Thus, r, = [r,/2) and r, = [r;/21 both yield the
maximal capacity C™={r,, y: 1} = 2nd|r,/2J[r,/2]; ie.
ndr?/2 or nd(r? — 1)/2, depending on whether r; is even
or odd, respectively. The value r, = [r,/2] is preferable
because it implies one less track (and thus one less read/
write head) when r, is odd.

An upper bound on the disc capacity is obtained if we
assume that data is recorded at the maximum possible
density on all tracks without wasting any disc surface for
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clock tracks. Thus

14 re
C¥ry,r}= Y 2ndr;=2nd Y k
i=1

k=r1
=ndr, +rXr,—r,+1)

It is easily seen that the smaller the value of r,, the larger
the value of C""{Zrl, r,}; with the maximum value of
ndry(ry + 1) = ndr? = ndt? assumed for r, = 1. However,
it is not cost-effective to reduce the value of r, beyond a
certain point, since the cost of the additional read/write
mechanisms cannot be justified in view of the relatively
small gain in capacity from the extremely short inner
tracks.

The value of C*{r,, r,} provides an ‘ideal’ reference
point against which the efficiency of various schemes can
be measured. For example, the efficiency of the optimal
single-clock-track arrangement (given by Lemma 1) com-
pared to the ideal upper bound is

Ume{ry, y: 1} = C™{ry, y: 1}/C*{ry, 1)}
=ri/2ry + )y — 1+ 1)

Thus, U™*{r,, y : 1} ranges from about 50% for the prac-
tically unachievable extreme of r, = 1 to about 67% when
r, = ry/2. In practice, r, < r,/4 is quite feasible. Thus, at
best only about 50-53% of the potential disc recording
capacity is utilised with a single clock track.

4 Discs with two clock tracks

One way to improve the utilisation ratio U is to divide
the tracks into y > 1 groups, with each group having its
own clock track. Even though more space will be wasted
by the multiple clock tracks than in the single clock track
case, one hopes that the added capacity for tracks in
groups 1, 2, ..., y — 1 will more than compensate for the
loss. We start with the simplest possible case; namely,
with y = 2.

Lemma 2: Given fixed outer and inner track radii r; and
r,, division of the t = r;, — r, + 1 tracks into groups of 1,
and t, tracks (z, + t, = £) can result in improved capac-
ity only if r,<r, +2—2./(r; +1). Easily obtainable
equivalent forms of this condition are t > 2,/(r; + 1) — 1
andt > 2,/(r) + 1.

Proof: The perimeter of the innermost track of the jth
group is 2np;. Thus using 7, = t — 7,, we have

Cl{y:2} = ky + Ky =2md[p,(r, — 1) + py(r, — 1)]
=2nd[—2+(ry—r,+ 2t +rt—1)—r —1]
Comparing the above with C{y:1} = 2ndr(t — 1), we
conclude that y = 2 improves the capacity over y = 1 if
22—, —r+2,+r,+1<0

A necessary condition for this inequality to hold is that
the corresponding quadratic equation have two real
roots. Thus, we must have (r; —r,+2>>4(r, +1)
which is the desired condition.

Corollary I: If in a disc with a single clock track r, has
the optimal value given by Lemma 1, then dividing the
tracks into two groups is always advantageous.

Proof: From Lemma 1, we have t°” =|r /2] + L
Examining the requirement for ¢ in terms of r; from
Lemma 2, we note that it is satisfied by ¢°” for r, > 10; a
condition which always holds in practice.
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Lemma 3: Given fixed outer and inner track radii r, and
r,, division of the ¢t = r; —r, + 1 tracks into groups of 7,
and 7, tracks (t, + 7, = ) results in maximum capacity if
T, = [1/21.

Proof: We rewrite the expression for C{y : 2} obtained in
the proof of Lemma 2 as

Cly:2}/Qrdy=(t+D*4+r(t—1)—r, 1
— [+ 12 -1,7

To maximise C{y : 2}, the last term in the above expres-
sion must be made as small as possible. Thus, if ¢ is odd,
we have 197 = (¢t + 1)/2 =T[t/2]. If ¢ is even, then ¢/2 =
[t/21 and t/2 + 1 are equally optimal choices for 7,.

Corollary 2: In dividing ¢ tracks into two groups of 7,
and t, tracks, optimality is achieved if 0 <7, — 7, < 1.

Proof: If ¢ is odd, then by Lemma 3 we have 7" =
(t +1)/2 and % =(t — 1)/2. If 7 is even, then we can
choose 1 = 1% = t/2.

Obviously, the results of Lemmas 2 and 3 must be
applied together. Lemma 3 tells us how to divide opti-
mally ¢ tracks into two groups when we choose to divide
and Lemma 2 tells us when it is advantageous to do the
splitting. Even though these results are interesting in their
own right, they were derived chiefly because they facili-
tate the proof of the subsequent main results.

5 Optimal number of clock tracks

We now consider the case of y > 1 track groups. Our aim
is to find the optimal number of track groups (clock
tracks) for given outer and inner track radii r, and r,.

Lemma 4: Given an arbitrary integer y(y < \/Z_t), there
exists an optimal division of ¢ tracks into exactly y track
groups of t,, 7,,...,7, tracks for which 7, =|t/y +

O — /21

Proof: Consider an optimal division of the ¢ tracks into
y track groups such that for all i (1 <i<y), we have
0<r1;,— 14, <1 From corollary 2, such an optimal
division must exist. Thus with 7, tracks in the outermost
track group, ¢ can be at most yr, and it must be at
least 7, +(; =D+ +(t,—y+1)=yr, —y(y — 1)/2.
Equivalently given ¢ tracks on the disc, 7, must satisfy

] <t, <[ty + (- 1/2]

Furthermore, the expression for C in the proof of Lemma
3 shows that it is advantageous to have 7, — 7,4, =1
whenever possible. To allow this, 7, must be selected to
have the maximum value in the above range. This last
part of the argument can be formalised as follows. We
will show that there exists an optimal arrangement for
which 7; — 7;,, = 1, except possibly for a single value of
the index i. Suppose that in some arrangement satisfying
0<7t,—7;4;<1foralli(l<i<y), wehave 17;,=1;,,
for two or more values of i. Let j and k be the smallest
and largest of these values. Then we have

‘L'1>T2>“'>Tj='fj+1>Tj+2>"'>‘ck
=Th+1 > T2 > > Ty

We can reassign the tracks to groups so that I'; has 1;
+ 1 tracks and I'y,, has 7., — 1 tracks. If we show
that this reassignment increases the disc capacity, the
proof is complete. This is due to the fact that repeating
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this procedure will move j toward 1 and k toward ¢, until
eventually one of them disappears at the edge. The
change in capacity resulting from the above rearrange-
ment can be attributed to four factors:

(@) +2nd(p; — 1): capacity gain as a result of the track
added to T;

(b) —2md(t; — 1): capacity loss of old I'; data tracks
because the innermost track is now 2zd shorter

k
(¢) — Y. 2md(r; — 1): capacity loss of Groups I';,,,
i=j+1
Ti2,..., Iy resulting from their inward movement
(d) —2ndp, . ,: capacity loss as a result of the removed
track of I’y ;

With some manipulation, the sum of the above four
values can be written as 2nd[k —j — (t; — 7,+,)]; but
from the above assumptions, T; — Ty4; = Tj4q — T €
—(j + 1). Thus the capacity has improved by at least
2nd.

Note that Lemma 4 can be applied recursively to con-
struct a ‘standard’ optimal configuration with y track
groups from the possibly many optimal arrangements. In
other words, once t, is determined, the remaining t — 7,
tracks can be divided into y — 1 track groups by using
the same procedure. The condition y < /2¢ in the state-
ment of Lemma 4 is needed for this recursive application
of the result to make sense. Having proven all the neces-
sary lemmas, we are now ready to present our main
result in the following theorem.

Theorem 1: Given fixed outer and inner track radii r;
and r,, division of the t = r; —r, + 1 tracks into y track
groups of 14, 7,, ..., T, tracks (by using Lemma 4) results
in maximum total disc capacity if y has the optimal value

¥ ry, £} = T2/ {r, — t/2 + 24/24
— \/[(rl + 25/24)r, — t + 25/24)]}1
Proof: Let t/y + (y — 1)/2 be an integer. This assumption,
if not valid, will yield a value for y**{r,, r,} which is less
than or equal to the actual value of y°P{r,, r,}. With this
assumption, recursive application of Lemma 4 results in
©"{r,, r,, 7} = 1% — j + 1. The innermost track of track

group j will have the radius p?™{r, r,, y} =7, + 1 —(t/y
+ y/2)j + j?/2. Thus, the total disc capacity will be

¥
Cor{r v, v} = 2md 3, [ — Dpi”]
k=1

= 271"12:1[‘/')’ +(@—1)2-k]

x [ry + 1 —(@t/y + y/2k + k?/2]

Multiplying out and using the identities Yj_, k=7

G +1)/2, Yl k2 =yy+1X2y +1)/6, and YI_, k> =7
(v + 1)%/4, we arrive at the following result:

Cop'{rl s Tes '}'}
= nd[y3/12 — 2r; — t + 25/12)y + t(2ry — t + 3)
— /7]

To determine the optimal value for y, we find the first
and second-order derivatives of C°” with respect to y.

aCoP{ry, r,, y}/0y = nd[y?*/4 — (2r, —t +25/12) + £*/y*]
2C"{ry, 1., v}/0y? = md(y/2—26%/y°)
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For y < \/2—t, the second-order derivative of C?{r,, r,,
y} is always negative. As a result, the smaller solution of
8C°"{r,, 15, 7}/dy =0 (which satisfies y < ./2f) maxi-
mises the capacity. This solution yields the result we are
seeking for y°”{r,, t}. In general, the above value for
y°P!{r,, t} is not an integer. Thus, as stated previously, the
next largest integer must be selected to achieve opti-
mality.

Fig. 2 shows the values of y°*{r,, t} for different values
of ry and t. Curves corresponding to some values of
y"{ry, t} (eg. 5, 7, 8, 9, 11, ...) have been omitted for
clarity. The utilisation ratio with the optimal number of
clock tracks is

U™={r, r,, P {ry, t}} = [v> — Q4r; — 12t + 25)y
+ 12tQ2ry — t + 3) — 12e2/y1/[12(ry + r)ry —re + 1)]

1000~ ’
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Fig. 2  Optimal number of clock tracks

The value of U™*{r,, r,: 1, y°?{r,, t}}, which represents a
pessimistic lower bound for U™>{r,r,, y*"'r,, t}}, has
bee plotted in Fig. 3 for different values of r; and t. It is

500 700 1000 2000

200 300 /

30 s 1 1 L 1 3
20 50 100 200 500 1000 2000

t

Fig. 3  Lower bound for optimal utilisation ratio

seen that even this pessimistic lower bound can exceed
90% for certain optimal configurations.

Examples: For a disc with r; = 100 and ¢ = 60, we have
from theorem 1, y°"{r, :100, t:60} =6 and from
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Lemma 4, 7,(t: 60, y: 6) = 12. The remaining 48 tracks
must be divided into 5 groups. Repeated use of Lemma 4
yields the complete standard optimal division: 12, 11, 10,
10, 9, 8. In the case of a disc with r, = 200 and ¢t = 125,
theorem 1 yields y°7{r, : 200, ¢t : 125} = 8, with optimal
dividion being: 19, 18, 17, 16, 15, 14, 13, 13.

6 Conclusion

We have considered fixed-head discs used in the design of
block-oriented rotating associative processors and have
shown that the disc surface utilization can be improved
by 70-90% through the incorporation of multiple clock
tracks in an optimal way. The provision of additional
clock tracks does not affect the system cost, as the read-
write heads for these tracks are already present in a head-
per-track disc and the processing cells such as those
designed for the RAPID block-oriented associative pro-
cessor [6] can be utilised with no modification. In addi-
tion, the provision of multiple clock tracks makes the
system more robust in the sense that a bad clock track or
failure of the associated read head will only result in
partial loss of capacity. This method may also be useful
for other applications of fixed-head discs where variable
track capacities do not result in difficult memory man-
agement problems (e.g. paging discs).

This study can be extended in several directions. If
data on the disc are stored and retrieved in terms of B-bit
data blocks, the division of the tracks into two groups is
worthwhile only if the extra capacity of tracks in group 1
is greater than or equal to the size of a data block.
Another type of constraint arises when it is required that
a byte of data be read out in parallel (see, e.g., [6]). In
this case, we may assign groups of b contiguous tracks to
hold the data in a byte-parallel format. Thus, we must
have 7; = 1 mod b, so that each track group contains a
clock track plus an integral number of ‘super-tracks’
(each composed of b contiguous tracks). The effects of
these additional constraints and of having multiple
recording surfaces on the optimal number of clock tracks
are currently being investigated.
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