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Abstract— A two-dimensional mesh of processing elements
(PE’s) with separable row and column buses (i.e., broadcast
mechanisms for rows and columns that can be logically divided
into a number of local buses through the use of PE-controlled
switches) has been shown to be quite effective for semigroup
computation, prefix computation, and a wide class of other
computations that do not require excessive communication or
data routing. For meshes with separable row/column buses, we
show how semigroup and prefix computations can be performed
with the same asymptotic time complexity without the provision
of buses for every row and every column and discuss the VLSI
implications of this new architecture. We find that with our basic
two-level arrangement, square meshes are not optimal for the
above algorithms and that the time complexity can be reduced
by using rectangular meshes. However, our method of building
higher order meshes allows the construction of an optimal square
mesh from rectangular submeshes. We further observe that
through more extensive use of PE-controlled switches in the mesh,
a hierarchy of buses can be realized efficiently in VLSL. The time-
complexity results are shown to correspond to those previously
published when certain parameters of our design are fixed at
special values.

Index Terms— Mesh-connected computer, mesh with multiple
broadcasting, mesh with row/column buses, optimal aspect ratio,
prefix computation, semigroup computation.

1. INTRODUCTION

two-dimensional mesh-connected computer consists of

N processors or processing elements (PE’s) arranged
in a grid, where adjacent processors are connected via local
communication links. The PE located at the grid point (3, ) is
connected to those located at (i —1, 5), (i+1, 5), (3,5 —1), and
(4,7 + 1). This structure can be easily realized in VLSI and
allows a high degree of integration. Meshes are natural struc-
tures for solving many problems in matrix computations and
image processing. Thus, researchers have designed numerous
algorithms for solving such problems on them [2], [6), [7],
[9], [12], [14], [18], [23], [24].

The main disadvantage of a mesh is that the number of
steps, or time, required by an algorithm is lower-bounded by
its diameter, i.e., T = Q{N'/2). Many computations can be
performed with lower latency compared to a mesh-connected
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computer if specialized architectures or networks are used [17].
For example, both semigroup and prefix computations are nat-
urally suited to a tree of PE’s or, equivalently, a tree-structured
Boolean network. Bilardi and Preparata have characterized
the complexity of N-element prefix computations, showing
that a spectrum of designs is possible with computation
time T in the range [Q(log N),O(N)] and network size
O((N/T)log(N/T)) in the worst case. In particular, this gives
asize of O(N/2log N) for T = §(N'/2), which is better than
the O(N) size of a mesh with the same latency. But generality
or flexibility always has a cost.

As a result of the diameter-based lower bound of Q(N1/2),
many researchers have proposed meshes augmented with
nonlocal communication mechanisms such as broadcasting and
bypass connections. In broadcast schemes, only one processor
is allowed to put data on any particular bus at a given time.
Bokhari {5] showed that by using a global bus connected to
all PE’s, the maximum of N numbers, assigned one per PE,
can be found in O(N'/3) time. Stout [21] showed that using
a global bus the time to perform semigroup computations
(finding the maximum being a special case) can be reduced to
O(N/3). Stout also showed that problems with higher degrees
of global communication, exemplified by sorting, have a lower
bound of Q(N'/2), so broadcast schemes do not help to reduce
their asymptotic complexity, although the constants associated
with computation time are reduced. He also showed that the
median of N values can be found in O(N'/31log?* N) time.

The problem with a single global bus is that it becomes a
bottleneck whenever multiple values have to be transferred and
this places a limit on the attainable speedup. Thus, multiple
broadcasting schemes have been proposed. Prasanna-Kumar
and Raghavendra [19] considered a mesh of N1/2 x N1/2
PE’s with broadcast buses in each row and each column (Fig.
1(a)) and developed parallel algorithms for many problems
in linear algebra, image processing, computational geometry,
and numerical computations. Using this mesh, semigroup com-
putations take O(N'/%), median finding O(N'/¢1og®/® N),
convex polygon, and nearest neighbor O(N'/®) time.

Chen et al. [10] showed that square versions of this ar-
chitecture are not the best form for semigroup and prefix
computations, but by using a rectangular N>/8 x N3/8 mesh,
the time for performing these computations can be reduced
to O(N'/%). They also claim to have developed algorithms
for the median row and the median problem with time com-
plexities of O(N'/#) and O(N'/®log N), respectively, using
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(C)

Fig. 1. Different interconnections schemes for a mesh: (a) mesh with row
and column broadcast buses, (b) hypermesh, (c) mesh with multiple global
buses, and (d) mesh with separable row and column buses.

this rectangular mesh.! Similar results about the optimality
of N5/8 x N3/% meshes for semigroup computations were
obtained by Peleg and Bar-Noy [16], who also provide a
formal proof that every algorithm for semigroup computation
on a rectangular mesh with buses takes at least Q(N1/%) steps
and extend the results to d-dimensional meshes.

Ragavendra [20] proposed the hypermesh (HMESH) ar-
chitecture which consists of an N1/2 x N1/2 mesh with a
hierarchy of broadcast buses in each row and each column
such that there are K PE’s on each bus. In the first level,
there are N'/2/K buses in each row or column, with a group
of K PE’s connected to each bus. One PE from each group
is connected to a second-level bus in a similar manner. This
process is repeated until there is only one group of K PE’s
which are then connected by a broadcast bus (Fig. 1(b)).
Using this architecture, semigroup, median row, and shortest
distance computations can be performed in O(log N) time.
Carlson [9] proposed a mesh modified with a hierarchy of L
global buses (Fig. 1(c)). This mesh can compute all terms of
a linear recurrence system (a problem shown to be equivalent
to a prefix computation) in O(N'/(+1)) time. Both of these
structures, like the pyramid, are difficult to implement in VLSL

Finally, Maeba et al. [13] considered a mesh with separable
row and column buses, i.e., row/column buses that can be
sectioned through PE-controlled switches (Fig. 1(d)). Unlike
the hierarchy of global or row/column buses, this architecture
is easy to implement in VLSI. Using this architecture with
switches inserted after every other processor on a row or
column bus, time complexity of O(log N) for semigroup com-
putation and O(N1/8 log3/ IN ) for median selection problem
is claimed. However, this result is of theoretical interest only
since it is achieved with an unrealistically large number of
switches on each bus. Even if practically realizable, such a
large number of switches would add to the bus complexity
and delay.

INote added in proof: See J. Parallel Distributed Computing, vol. 15, pp.
79-84, 1992.
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Fig. 2. The proposed scheme of mesh interconnection with separable row
and column buses inserted between submeshes or PE blocks.

A recently proposed alternative to the use of buses, and
one that is potentially more efficient for applications with
high degrees of global communication, is Dally’s “express
channels” [11]. In the case of a two-dimensional mesh, express
row and column channels simply connect the PE at (i, j) to
the PE’s at (i & g,j) and (i,j £ h), for selected values of ¢
and j, where g and h are design parameters.

II. MESH WITH FEWER SEPARABLE BUSES

We propose a modification to Maeba et al.’s architecture
that can be implemented even more efficiently using VLSI
technology. Like Maeba et al.’s scheme, our approach uses
a standard mesh augmented with row and column broadcast
buses which can be configured into local buses by PE-
controlled switches. Unlike previous approaches, however, our
scheme does not need all PE’s to be connected to row and
columns buses, but rather postulates one row (column) bus
for every N* rows (columns) of PE’s where k < 1/2. This
reduces the number of buses required, and thus the associated
area cost, by a factor of N*. As shown in Fig. 2, N* x N*
blocks of PE’s are interconnected using only local links as in
a simple mesh. One PE in each block, designated as the block
leader, is connected to the separable row and column buses to
be described shortly (for examples, see Fig. 3).

This scheme allows the design of efficient parallel al-
gorithms for problems with limited global communication.
Examples include semigroup computation, prefix computation,
and median computation. Algorithms proceed in time by first
using the local links in each block and then using the structure
of row/column buses, one hierarchy level at a time, until the
buses connecting entire Tows or columns are reached. Each
level of the hierarchy corresponds to a particular pattern of
open and closed switches in the row or column bus.

With regard to VLSI implementation, this structure has
several advantages over previous approaches:

a) Local links are easier to build than global buses. This
is because the proximity of the PE’s makes it easy
to provide a high-performance link interconnecting two
neighboring PE’s. Such a link can even be bit-serial
because the distance is so small that high-bandwidth
communication can still be achieved.
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Fig. 3. Specific examples of the proposed mesh architecture with a reduced
number of row/column buses: (a) square mesh with 256 PE’s, and (b) optimal
rectangular mesh of the same size. To avoid clutter, local mesh connections
are not shown.

b) Broadcast buses are difficult to implement efficiently
if they are to interconnect a large number of PE’s
over a long distance. Many authors have assumed a
constant broadcast time, but in practice the broadcast
time is proportional to log F, where E is the number of
processors connected to the bus. With row and column
buses for all PE’s, the buses must have high performance
to match the speed of local links.

c) Scalability in hardware is a concern too, because in
building a large mesh composed of thousands of PE’s,
multiple VLSI chips have to be used. With row and
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column buses for all PE’s, an unreasonable amount of
interchip wiring will be required. Our approach over-
comes this by using a scalable recursive method of mesh
building, which will be explained in detail in Section IV.

The remainder of this paper is organized as follows. First,
semigroup and prefix computation algorithms are given for
our mesh (Section IIT). We find that for our basic two-level
organization (one level corresponding to all the switches open
and the other to all closed), a rectangular rather than square ar-
rangement of PE’s is the best form for these algorithms. Using
this two-level sectioning of separable row and column buses,
we achieve the same O(N'/#) time complexity found by Chen
et al. [10] for the mesh of Fig. 1(a), despite a significant
reduction in the number of buses. The same result is achieved
for prefix computation. Next, we generalize the method to
hierarchical L-level sectioning of separable row and column
buses achieving a time complexity of O(N'/3L+2)) which is
better than the O(N/(2+2)) complexity found by Carlson [9]
for a mesh with a hierarchy of L global buses. We then show
that our method of building meshes is scalable by indicating
how larger meshes (including certain square meshes) can be
built from optimal-shaped rectangular submeshes. Finally, we
discuss the VLSI implications of our designs.

III. SEMIGROUP AND PREFIX COMPUTATIONS

Semigroup computations form an important class of com-
putational problems. Examples include computing the sum,
product, maximum, minimum, and Boolean parity over a
set of values. A semigroup computation can be formally
described by a pair (@, S), where @ is an associative binary
operator and S = {ag,a1,...,an—-1} is a set of data items
[10]. The problem is to compute ag ® a3 & ...  an_1.
Chen et al. [10] have proposed an N3/8 x N3/8 rectangular
mesh with fully connected row and column buses which can
perform a semigroup computation in O(N'/8) time—down
from O(N'/8) resulting from a square mesh. Intuitively,
the better performance of rectangular meshes compared to
square ones results from the larger number of buses, and
thus increased communication bandwidth, associated with the
same number N of PE’s. We will arrive at the same O(N1/8)
computation time with our simplified architecture.

A. The Basic Semigroup Algorithm

In this subsection, we describe the semigroup algorithm for
a specific instance of our general mesh architecture, viz, an
N®/8 x N3/% mesh composed of N/8 x N1/® PE blocks.
A row group is defined as N1/ blocks contiguous in a row
while a row band consists of a group of N/8 consecutive row
groups (Fig. 4). Two levels are assumed for the hierarchical
sectioning of separable row and column buses. A row band is
associated with an entire row bus (first hierarchy level) and
a row group is associated with each one of the separable bus
sections (second hierarchy level). Similarly, a column group
consists of N''/8 blocks contiguous in a column and a column
band is formed by N3/8 column groups. There are a total of
N1/4 column buses and N1/2 row buses (refer to examples in
Fig. 3). Initially there is one data item in each PE.
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Fig. 4. Definition of terms for the semigroup algorithm.

Step 1 (Block Reduction): Perform the semigroup computa-
tion for each block, using local links. This step takes O(N'/#)
time. The result for each block is held in the upper left PE
of the block, called the block leader. This step reduces the
problem size from N to N3/4,

Step 2a (Row-Group Reduction): Copy the partial result in
each row group to the row-group leader which performs the
semigroup computation as it receives the partial results. This
is done by using the corresponding row bus sections and
takes O(N1/8) time. The problem size is now reduced to
N3/4/N1/8 - N5/8.

Step 2b (Row-Band Reduction): Copy the partial results
from row-group leaders to row-band leaders which perform
the semigroup computation as they receive the partial results.
This is done by using entire row buses and takes O(N'/%)
time. Now there are N1/2 values in the leftmost column, one
per row-band leader.

Step 3a (Column-Group Reduction]): Copy the partial re-
sults from the leftmost column groups to the leftmost column-
group leaders which perform the semigroup computation as
they receive the partial results. This is done by using column
bus sections and takes O(N'/8) time. The problem size is
now N3/8,

Step 3b (Replication of Values): Broadcast the partial result
of each leftmost column-group leader to all PE’s connected
to a Tow bus, using N3/8 of the N'/2 row buses. This step
takes constant time.

Step 3¢ (Column-to-Row Transposition): Partition the N 3/8
partial results into N/# groups each having N'/® elements,
so that each group can use a column bus. Copy the N 1/8 jtems
in each group to the topmost PE (Row 0) which performs the
semigroup computation. At the end of this O(N'/®)-time step,
we have N/ items in Row 0.

Steps 4a/b (Zeroth-Row Reduction): Steps 2a and 2b can
be applied once again here to reduce the N'/* intermediate
values to N1/8 and then to N° = 1 final result in the upper
leftmost PE. These two steps take O(N'/8) time each.
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An alternative approach to Step 4 is to perform the semi-
group computation for the remaining N'/4 values by using the
simulation tree technique with N1/4 x N1/4 row and column
buses, as described by Ragavendra [20] and Chen et al. [10].
This step would then take O(log N) time. However, since
this does not change the overall time complexity of O(N/8)
for our algorithm, we have chosen to use the conceptually
simpler approach. One may note that Steps 2b and 3a can
be interchanged without affecting the result. In this way the
computation proceeds first by using local links within blocks,
then using bus sections in row and column groups, and finally
using entire row and column buses.

Compared to the mesh proposed by Chen et al. [10] which
uses a total of N3/84+N3/8 = O(N>/#) row/column buses, our
approach needs N1/2 + N1/ = O(N'/2) buses. Each of our
column buses is connected to N'/2 PE’s compared to N°/8
in the above scheme. The number of bus switches needed in
our approach is N1/8 x N/2 4 N3/8 x N4 = O(N®/8),
but since switches are easier to build than buses, our mesh is
simpler overall.

B. Prefix Computations

Semigroup computation can be viewed as a special case of
prefix computation defined as the simultaneous computation of
Si=ayPar1®...Pa; forall 7 in the range 0 < ¢ < N — 1.
Let S;;=0a;®a;+1D... a;t < j be the local prefix from
a; to aj. Clearly, Sj = So’j = So0,i, @D Si +1,i, D ~®SiM+l,j
where 0 < 3y < i3 < ... < ipr < j. The algorithm for prefix
computation is very similar to the one described in Section
II-A, but we proceed from left to right instead of right to
left. Also, intermediate results have to be kept in each node,
because the algorithm has two phases: from local to global
and from global to local.

To write the required algorithm, we need to specify an
ordering for the PE’s and their corresponding values. We
assume that within a block, PE’s are numbered in row-
major order, starting from 0. PE blocks are also numbered
in row-major order, starting from 0. The input data items
ag,a1,...,an—_1 are stored in the mesh in increasing order of
block numbers and in increasing order of PE numbers when
they are within the same block. The algorithm is to produce
S; in the PE initially holding a;.

Step 1 (Local Prefixes for each Block): Compute S, ; in
parallel for each block, where a; is held in the block and 2
is the minimum k such that a; is held in the block.

Step 2 (Row Reduction): Generate row-group prefixes by
broadcasting data using row bus sections. Then generate row-
band prefixes by broadcasting data using entire row buses.
At the end of this step the rightmost column contains the
row-band prefixes. Note that we proceed from left to right.

Step 3 (Column Reduction): Generate the column-group
prefixes by broadcasting data on column bus sections (actually
we are using only the rightmost column bus). Broadcast the
resulting N3/% prefixes within rows and do column-to-row
transposition as in Steps 3b and 3c of the semigroup algorithm.

Step 4 (Zeroth-Row Reduction): Do a prefix computation
for the items in Row 0.
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Steps 5-8 (Backward Phase): These constitute Phast 2 of
the algorithm. Instead of going from local to global, we go
from global to local, keeping in mind that intermediate results
have been stored in the PE’s. Steps 1 through 4 are performed
backwards to obtain the prefix in each PE.

Since any step in this algorithm takes O(N'/8) time, the
overall time complexity is O(N1/8), as expected.

C. Extension to an Arbitrary Size Mesh

In this subsection, we will extend the algorithm of Section
III-A (devised for a special case of our proposed architecture
having N5/ rows, N3/8 columns, N1/ x N1/® blocks,
and two-level sectioning of buses) to an arbitrary size mesh
with an arbitrary number of hierarchical sectioning levels
for both row and column buses. The extension applies to
the prefix algorithm as well. The parameters are defined as
follows:

N7 x N¢ Rectangular mesh with N” rows and
Ne¢ columns (r +c= 1,7 > ¢).

N* x N*  Size of a block of PEs connected only by local
links (k < 1/2)

R Number of hierarchical sectioning levels
for row buses.

C Number of hierarchical sectioning levels

for column buses.

With the above notation, there are N”/N* = N™* row and
N¢/N* = N°=* column buses.

Step 1: Perform the semigroup computation for each block,
using local links. This step takes O(N*) time. The result of
each block is held in the block leader. After this step, the
problem size is reduced to N/N2k = N1-2k,

Step 2: The purpose of this step in the original algorithm was
to reduce the problem size using the separable row buses. For
two-level sectioning, two reductions are needed, each reducing
the problem size by N*. In general, for R-level sectioning, R
reduction steps are needed, for a total reduction of N7*, At the
end of this step, the problem size is reduced to N1~ (B+2)¥ and
the results are in the leftmost column. The time complexity of
the reduction is O(N*). From here, we deduce that the number
of columns in the mesh is N¢ = N(B+Dk and the number of
column buses is N¢™% = NERk,

Step 3a: Perform reduction on the leftmost column, reducing
each time by N*. With C-level hierarchical sectioning, C' — 1
reductions are needed, for a total teduction of N(C—Dk At
the end of this step, the problem size has been reduced to
N1-(B+C+1)k

Step 3b: Broadcast the intermediate results of each leftmost
column-group leader to all PE’s connected to a row bus. This
step takes a constant time.

Step 3c: Partition the N1—(R+C+DF jntermediate results
into N®* groups with N'~(R+C+1k elements in each, so
that each group can use one column bus. Copy the values of
each group to the topmost PE (Row 0) which performs the
semigroup computation. This step takes OQ(N!~(2R+C+1)k)
time. In order to minimize the time complexity, we require
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that k = 1 — (2R + C + 1)k, yielding k = 1/(2R + C + 2).
With this value for k, the current step takes O(N k ) time, and
at the end of the step, there are N 7* results in row 0 of the
mesh.

Step 4: Step 2 can be applied once again here to reduce the
intermediate values in the topmost row by Nk At the end,
the final result can be found in the upper leftmost PE. This
step takes O(NF) time.

From this discussion, we conclude that the optimal time
complexity is O(N'/(2R+C+2)) and that the optimal mesh has
N™ = NE+C+DE rows and N© = NB+HDE columns and it
is thus of size N(R+CHT1/QR+C+2)  N(R+1)/(2R+C+2) we
conclude that the optimal mesh is always rectangular because
R+C+1#R+1.

Let us examine some special cases. For R = C = 1, we
obtain an N3/ x N?/5 mesh having no bus switches and
with a running time of O(N''/?). This is a new and significant
result in itself. By choosing R = C' = 2 as in our previous
algorithm, we end up with an N3/8 x N3/8 mesh with a
running time of O(N1/8), as expected. For R = C = L,
we end up with a NRLHD/BL+2)  N(L+1)/(BL+2) megh
with a running time of O(N'/(32+2)) The number of buses
needed is N°~% 4+ N7k = O(N7—*), which in our case is
O(N?L/BL+2)) Compare this result with those reported by
Carlson [9] using a hierarchy of L global buses connecting all
PE’s, achieving a running time of O(N1/(Z+2)),

With L-level hierarchical sectioning of buses, the number
of switches per row bus and column bus are approximately
NI=D/BL+2) and N@L-1)/BL+2)  respectively. These ex-
pressions are obtained by dividing the number of PE’s in
a row (column) by N%/GL+2) to account for the fact that
one out of every N'/BL+2) PE’s is a block leader and
a switch is inserted after every N1/(3L+2) biock leaders.
The total number of switches is derived by multiplying the
number of row (column) buses by the number of switches
per row (column) bus; viz N2L/GL+2) y N(L-1)/(3L+2)
+NL/BL+2) 5 NRL-D/(L+2) = O(NBL-1/(BL+2)),

The running time with L-level hierarchical sectioning is
actually O(LN'/GL+2)) but in the above discussion we
ignored L since it is limited to be a small constant in practice.
From a theoretical -perspective, it is interesting to note that
if L approaches log N, then the running time becomes
O((log N)(N/Bleg N+2))) = O(log N) since N1/ 108N = ¢,
Thus, logarithmic time can be achieved asymptotically when
L becomes large.

We can also perform a simple optimization, by assigning
more than one data value to each processor, as pointed out
by Stout [21]. We can assign N/P data items to each of
P processors in a smaller mesh. The running time on each
processor is linear so it takes O(N/P) time to. perform
the semigroup computation. Once this is done, the mesh is
used with a running time of O(PY/(3L+2)). The combined
execution time is O(max(N/P, PY/(31+2))}, To minimize the
time complexity, we set N/P = O(PY(L+2))  resulting
in P = O(NGL+2)/BL+3)) which yields a complexity of
O(PY/BL+2)y = O(N1/BL+3)), Setting L. = 2, this expres-
sion reduces to O(N'/%), the result found. by Chen et al.
[10].
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Fig. 5. Building a larger mesh from smaller rectangular meshes.

IV. BUILDING HIGHER ORDER MESHES

In this section, we present a recursive procedure for com-
bining small meshes to obtain larger ones that can perform
semigroup computations with a lower complexity. We will
also show that our method can be used to build square meshes
from rectangular meshes. The process is first illustrated using
the N3/8 x N3/8 mesh of Section II-A and then extended to
arbitrary meshes.

A. Two-Level Mesh

We showed in Section II-A that the optimal mesh with two-
level sectioning of buses has N5/3 x N3/8 PE’s with N1/2
row buses and N'/% column buses. Fig. 5 illustrates how we
can build a higher order mesh using this rectangular mesh,
connecting one PE from each rectangular mesh to higher level
row and column buses.

We know that the optimal mesh with two level sectioning
has Y/2 row buses and Y'!/¢ column buses, for some Y.
We use rectangular meshes of size X%/8 x X3/, for some
X, each giving a time complexity of O(X'/®). Since the
hierarchy has two levels, we conclude that Y/4 = (X1/8)2 or
Y = X. The total number of PE’s is X5/8 x X1/4 x X3/8 x
X2 = N, yielding X = N*7. The time complexity is
O(X1/8) = O(N'/14), and the dimensions of the larger mesh
are N'/2 x N2, so we end up with a square mesh! Note
that this result should be the same as for four-level sectioning;:
L = 4 and O(NV/BL+2)) = O(N'/14), which is consistent
with our intuitive expectation.

B. Arbitrary Mesh

We will give the general proof for any arbitrary higher level
mesh. As shown in Fig. 6, a higher order mesh is built from
X2 x X172 meshes for some X, each guaranteeing a running
time of O(X*)(k < 1/2). In our recursive procedure for
building a larger mesh, we start first with a square mesh using
only local links, so initially a = k = 1/2. We postulate b row
buses and ¢ column buses.

Each recursive iteration of the algorithm is as follows.

Step 1: Perform the semigroup computation for each com-
ponent submesh. This step takes O(X*) time.
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Fig. 6. Notation for a general iteration of the recursive procedure.

Step 2: The purpose of this step in the original algorithm was
to reduce the problem size using the separable row buses. For
two-level sectioning, two reductions are needed, each reducing
the problem size by X*. We thus conclude that the number of
column buses is ¢ = X 2*. At the end of this step, the leftmost
column contains b intermediate results. Define b = X9 for
some d.

Step 3a: Perform reduction on the leftmost column by X*.
At the end of this step, the number of values in the leftmost
column is X 9%

Step 3b: Broadcast the partial results of each leftmost
column-group leader to all PE’s connected to a row bus. This
step takes a constant time.

Step 3c: Partition the X9~* partial results into X2* groups
with X4-3% elements in each, so that each group can use a
column bus. Copy the values of each group to the topmost
PE (Row 0) which performs the semigroup computation. To
minimize the time complexity, we set k = d — 3k or d = 4k.
Thus the number of row buses is b = X**,

Step 4: Step 2 can be applied once again here to reduce the
intermediate values in the topmost row. At the end, the final
result can be found in the upper leftmost PE.

If the higher order mesh is to consist of N PE’s overall, we
must have X°®xcx X17¢xb = X*x X2k x X1-ex X4 = N,
giving X = N1/(6k+1) Since the running time is O(X*), this
higher order mesh gives us a running time of O(N*/(€k+1)),
From this we can derive the following recurrence relations
where ¢ is the iteration number:

ki+1 = ki/(ﬁk,‘ + 1), initially ko = 1/2
;41 = (2ki + ai)/(6ki + 1), initially ag = 1/2.

The solution of the recurrence relation for & is k; = 1/(6¢+2),
giving a running time of O(N1/(%+2)), Intuitively, we can
see that this result should correspond to a 2i-level hierar-
chical sectioning scheme. Setting L = 2¢ in the formula
O(N1/(BL+2)) yields O(N'/(6+2)) as expected. The solution
of the recurrence relation for a is a; = (2i+1)/(6:42) which
again is consistent with the results presented in Section II-C.

By using this scheme as discussed, we always obtain a
rectangular mesh. However, if we exchange the roles of rows
and columns at each iteration step, we can get a square mesh.
To prove this, we set a;41 = (2k; + 1 — a;)/(6k; + 1); i.e.,
we replace a; with 1 — a; in the recurrence for a; ;. It is then
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easily verified by manipulating the recurrence expression for
a;+2 that

Since the initial condition is ap = 1/2, we conclude that
as; = 1/2 for all j; i.e., the mesh after iterations 0,2,4,6, ...
is square.

It is easy to extend this result to meshes that are built with
L-level hierarchical sectioning at each iteration. In this case,
¢ = X% (the number of column buses) and b = X2L* (the
number of row buses). It is then easily shown that for the ith
iteration:

kiy1 = k,/(3Lk1 +1),
a1 = (Lki + a;)/(3Lk; + 1),

initially ko = 1/2
initially ag = 1/2.

The solution is k; = 1/(3iL + 2). In this general case, it can
be similarly shown that the mesh after iterations 0,2,4,6,. ..
can be square.

C. VLSI Implications

In the construction of a mesh composed of thousands of
processors, many compromises have to be made. Given the
state of the art in VLSI, it is impossible to embed the entire
mesh into a single VLSI chip. Thus, several chips need to be
built and interconnected. In building such a mesh, regularity
of construction is important since it allows us to use several
identical chips to build a large system. Also, the amount of
interconnections, especially off-chip ones, is very important.

Our mesh design provides clear advantages in these regards.
In a simple mesh, all PE’s have four neighbors, except for the
PE’s on the first and last rows/columns. In our mesh, this
does not have to be the case. Thus, it is possible to embed
part of the mesh into a single VLSI chip. Then, multiple chips
are connected via buses without having full connections as in
the original mesh. Even though switches are easy to build,
it may not be advisable to have many hierarchical sectioning
levels by using more and more switches because of the delay
that such switches introduce. Instead, the recursive procedure
outlined in Section III-B can be employed to construct a larger
mesh. Of course, this implies that some PE’s have a higher
degree (the leader PE’s), but a compromise can be achieved
between the number of switches and the number of levels in
the iterative procedure.

V. CONCLUSION

In this paper, we have shown how semigroup and prefix
computations can be performed with optimal time complexity
on mesh-connected computers with separable row and column
buses without the provision of buses for every row and every
column. We have proven that with two-level sectioning of
buses, square meshes are not optimal and presented a recursive
procedure for building higher order meshes that can yield
an optimal square mesh using more hierarchy levels. Our
time-complexity results were shown to correspond to those
previously published when certain parameters of our design
are fixed at special values.
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A possible next step is to develop algorithms for other
computations using our mesh. For many problems with limited
global communication, such as image processing, a significant
improvement in time can be expected. Our results can also be
extended to d-dimensional meshes, even though a mesh with
d > 2 is of lesser practical importance.
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