A Vector Quantizer with Fully Pipelined Data and Control Flow

Ding-Ming Kwai and Behrooz Parhami

Department of Electrical and Computer Engineering
University of California
Santa Barbara, CA 93106-9560, USA

Abstract — Previously proposed linear array structures for
vector quantization tend to treat memory access as an independ-
ent issue, implying that load and store operations are performed
through separate data and control pins. For most applications,
it is essential to adaptively update codevectors during normal
operation. We present a design where global wiring is restricted
to power and clock supplies, thus making the architecture truly
scalable. Since data and control signals are not broadcast but
propagated through local connections, they have to be accessed
by the host via processing elements at the array boundary. The
contribution of this paper is to ensure these desirable properties
while maintaining its pipelined and parallel operation. An
important objective is to demonstrate that our proposed linear
array architecture using a data-driven control scheme exhibits
flexibility and expandability which make it very attractive for
VLSI implementation.

1. INTRODUCTION

Vector quantization (VQ) has been proposed as a data
compression technique for certain speech and image process-
ing applications [4]. A VQ-based system parses data into
non-overlapped groups or vectors. According to Shannon's
source coding theory, better performance can be achieved by
coding vectors rather than scalars. The fundamental compu-
tation associated with VQ is a pattern matching process in
which each input vector (pattern) is compared with a set of
representative codevectors (templates) to identify the closest
match. These codevectors are contained in a codebook such
that only the indices of the matched codevectors are stored or
transmitted. The indices are used to recover the codevectors.

Studies of computational complexity in VQ-based systems
focus on the encoding process, since the reverse decoding
process is a simple table lookup. This is underscored by the
fact that an optimal VQ encoder generally requires to search
through the entire codebook. Adopting tree search, with the
codebook organized in multiple levels, significantly reduces
the computational complexity, at the expense of increased
storage requirement and degraded quality in terms of signal-
to-noise ratio. Since an L-level tree-search VQ encoder can
be realized by means of a cascaded series of L full-search VQ
encoders [3], we will concentrate on the design of full-search
VQ encoders.

In view of low interconnection density for VLSI layout,
bounded I/0O requirements, and ease of global clocking in the

0-7803-3694-1/97/$10.00 © 1997 IEEE

presence of propagation delays, most designs for VQ encod-
ers are based on linear array architectures [2], [5], [6], [7].
However, previously proposed designs tend to treat memory
access as an independent issue, implying that load and store
operations are performed through separate I/O pins or, alter-
natively, assuming the use of a permanent memory in which
the codebook has been installed during fabrication. For most
applications, the ability to support in-operation update of the
codebook is essential. With existing designs, this capability
is in conflict with the requirement that I/O has to be per-
formed via processing elements (PEs) at the array boundary.
The design method considered here allows us to include
these desirable functions into the array while maintaining its
pipelined and parallel operation.

The rest of this paper is organized as follows. Section II
briefly describes the VQ full-search algorithm. Section III
introduces a unidirectional linear array for VQ encoding. In
Section IV, we propose a data-driven control scheme to solve
the problems of data loading, array initialization, and index
labeling. Section V examines various design choices for the
PE structure and analyzes these designs with regard to cost
and performance. Section VI contains our conclusions.

IL VQ FULL SEARCH ALGORITHM

Let x; be an M-dimensional vector, where the subscript £
indicates its position in a stream of source vectors entering a
VQ encoder. The VQ encoder searches through the codebook
{w;: 0 <i< N -1} and derives an index /; pointing to the
best matched codevector for input vector x;. Associated with
the pattern matching process is a distortion measure, which
serves as the basis for quantifying the dissimilarity between
each codevector w; and input vector x;.

Let us denote x; = (X0 Xx1 ... Xk ar-1) and w; = (W wy ...
w;, m-1). The squared error distortion measure can be formu-

lated as follows.
M-1

.
toee — wi||* = ;;; w2 =2wyxy +x,§)

For the purpose of codebook search, the term ' x,2 in the
above equation is common to all codevectors, and hence, will
not affect the comparison result. This simplifies the distor-
tion measure to an inner-product form of A multiplication-
accumulation steps.

1067

M1
dix, w) = Zo wilwy —2xy)
=

In addition, the VQ encoder needs to find the minimal value
among all & distortion measures. The index /; = i is selected
if d = d(x, w;) yields a minimal value.

Fig. 1 depicts the dependence graph of the full-search VQ
algorithm for N = 4 and M = 3. We have added the rightmost
column of dark nodes to show the comparison steps after the
inner-product computation is completed at each row. Note
that in the dependence graph, it is required to insert a zero at
the first node of each row as a new inner-product computa-
tion begins. The dark nodes at the left are thus different from
the clear nodes that receive intermediate results passed from
the previous nodes. The computations associated with the
rightmost column of dark nodes can be overlapped with the
next computation, so the input data can be continuously fed
to the PEs without interspersed delay.

d. I

k" k

Fig. 1. Dependence graph of full-search VQ.

III. ARRAY ARCHITECTURE FOR FULL-SEARCH VQ

Our design is modular; identical PEs are cascaded into a
linear array. It is derived by projecting the dependence graph
of Fig. 1 along the j direction. The projection direction is
coincident with the vector dimension in such a way that the
ith row is mapped onto the ith PE. The linear array has two
types of channels: ¢y is for control signals in which a two-bit
pattern cic; passes through unchanged; xy, dy, and Iy are for
data signals of the input vector, the intermediate result of the
minimal distortion measure, and the index of the corre-
sponding codevector, respectively.

The operation of the linear array is similar to that of a
distributed pipeline [1]. The input data stream travels from
left to right, one PE per clock cycle. Each PE performs M
inner-product steps with its stored codevector for each input
vector received element by element. In the mean time, the
input vector is passed to the right. The distortion measure is
obtained by the summation of the products and compared
with the minimal value (up to the previous PE) received
from the left. The comparison result then directs the same or

a smaller distortion measure and its associated index to the
right. The next PE repeats this process.

Fig. 2 shows the detailed structure of each PE. It is essen-
tially composed of data latches (rectangular boxes), two-way
multiplexers (circles with a cross), a comparator (CMP), and
a multiplier-accumulator module (MA) that is sign-extended
by an appropriate number of bits to account for carry genera-
tion. For the ith PE, the codevector w; is stored in a circular
queue: w; is recycled through the queue so that its element wy
emerges as the element xy of the input vector x; arrives for
computing the product wy(wy — 2xy). The result is fed back to
the accumulator to add on to another product.

dy

2k +[log, M1+ 1

o 2

[log N1

Fig. 2. PE structure.

Due to‘the rhythmic operation of VQ encoding, the circu-
lar queue can be implemented as a random access memory
with a counter linked to the global clock determining the
address. The address counter is increased up to the length of
the circular queue and then reset to zero. Using the circular
queue allows the loading of new codevectors to be pipelined
with normal operation and permits the vector dimension to
vary. In order to flexibly determine the vector dimension A7,
we assume that the circular queue has a variable length. In
practice, the value of A/ is selected in the range from 16 to
36 [2]. A 6-bit counter is sufficient for such applications.

IV. DATA-DRIVEN CONTROL SCHEME

Note that if the dark node at left end of each row in Fig. 1
also resets the address counter of the circular queue to zero,
the clear nodes can increment it up to A7 — 1. Hence, we can
let the input data stream carry this information to distinguish
the various functions that each PE should perform.

Since data and control signals are not broadcast but propa-
gated through the linear array, a data-driven control scheme

1068

is proposed to allow the loading and storing of data items by
sending a two-bit pattern ¢ c.. This pattern is coincident with
each element xy;, used to specify PE's functions as the input
vector traverses the linear array. Our design has the advan-
tage that it is readily expandable by including additional PEs
for a larger codebook size. To achieve this, the index labels
on PEs must also be dynamically changeable.

The /O pins for passing data element xy; and index /i are
reused for loading of new codevectors and labeling on PEs,
respectively. If we insert dy = —oo, the comparison result will
direct the incoming index Ii; to go through without change.
Thus, the latches for passing Iy in the linear array form a
shift register of N stages. This is extremely useful when we
let the input xi = wy; and I; = i, where / is the location where
they are destined to stay, so as to store w; and label 7 on the
ith PE. The above process can be explained by the depend-
ence graph shown in Fig. 3. The added lightly shaded nodes
transfer the data flow to the projection direction, implying
that the data stay at the PE.

In Fig. 3, triples (xy, dy, Iy) = (Wy, —0, i), for 0 <i<N-1
and 0 <j < M - 1, show the data sequentially inserted in
ascending order of indices during the initialization phase. In
general, the index labels on PEs are not necessarily consecu-
tive on the physical array. Thus, if spare PEs and bypass
connections are available, the replacement of faulty PEs can
be done without modifying the procedure. The linear array
can be easily extended to incorporate fault tolerance.

The two-bit pattern ¢,c; shown beside each node in Fig. 3
marks three distinct types of nodes. Each type is related to a
different function performed by the PE. One may observe
that the bit stream of ¢; flows in the vertical direction and
the bit stream of ¢, flows in the diagonal direction. The latter
corresponds to taking two clock cycles to pass through a PE,
and hence, two delays are placed on the path of ¢,. It can be
verified that the two bit-streams correctly instruct the linear
array to load/store the codevectors first and then to compute/
compare the distortion measures.

In the initialization phase, ¢, takes on the value 1 followed
by N — 1 0s, with the pattern repeated M times for M dimen-
sions, while ¢, remains 1. During normal operation, ¢, takes
on the value 1 followed by M — 1 0s, while ¢, remains 0. The
¢, bit stream also indicates the time to retrieve the minimal
distortion measure and the index of the corresponding
codevector, with a 0-to-1 transition of ¢, at the output. The
resulting functional table, relating the PE's operations to the
control tags ¢| and ¢, is shown in Fig. 4.

Compute/Reset

Cy
Cy

Store/Load

Fig. 4. Functional table.
V. SERIAL/PARALLEL PROCESSING TRADEOFFS

The proposed array architecture for VQ encoding can be
implemented in many different ways. We analyze the cost
and performance of such arrays with four implementation
alternatives. These alternatives are based on concurrency or
lack thereof in handling words (word-parallel vs. word-
serial) or bits within words (bit-parallel vs. bit-serial).

The circuit size per PE of each design is estimated based
on a gate-level analysis of the components. The contribution
of the codebook memory is not considered, since its size is
MNK bits for the four designs. Ripple-carry adder and array
multiplier are assumed for the multiplier-accumulator. For
bit-serial designs, the multiplication is done by a sequence of
shift-and-add operations, assuming that the least significant
bit is recetved first.

With the initial word length K, the product wy(wy — 2xy)
requires 2K + 1 bits and the sum of M such products needs

’< """"""""""""""" T Initialization phase

e e Normal operation

Fig. 3. Augmented dependence graph showing codevector load/store operations.

10569

another [log, M bits. The total number of bits for computing
and passing the minimal distortion value is thus 2K + [log,
M| + 1. Here, we assume that this additional precision is
required. For bit-serial designs, the input data words must
include sign extension, which reduces the throughput rate by
a factor of 1/(2K +[logy M1+ 1),

The word-parallel bit-parallel design [2] can be seen as a
direct implementation of Fig. 1. A large number of I/O pins
are needed in order to support the required data bandwidth.
For example, with N = 256, M = 16, and K = 8, the number
of /O pins is 2(MK + 2K + log: M + loga N + 1) = 314.
Fewer 1/O pins are needed in the word-parallel bit-serial
design [7]. However, in order to align incoming and outgo-
ing data items, a large number of data latches must be added.

Unlike the above designs in which the codebook is distrib-
uted throughout the array, the word-serial bit-serial design
[5] uses external centralized memory to store the codebook.
The I/O bandwidth is constant, provided that the precision of
the distortion value is Iess than M bits. Its control scheme
incorporates four-bit patterns to load/store the codebook and
initialize the array, but is more complicated than our design
and does not allow the vector dimension to change.

We assume that the resolution r = (log; N)/M is kept at 0.5
bit per sample and that the input data is K = 8 bits wide. The
four implementation alternatives are different with regard to
cost-effectiveness due to the area and time trade-offs. Fig. 5
shows area-time measure of the four designs with M varying
from 16 to 36. The area-time measure is obtained by divid-
ing the total circuit size by the throughput rate.

1000000
100000 |- Word-serial f
Bit-serial
10000 (-
1000 |-

Word-serial
Bit-parallel

Word-parallel
Bit-parallel

ATMeasure (x 10°)

‘Word-parallel

ol Bit-serial

00[1 1 1 1
16 20 24 28 32 36
Vector Dimension

Fig. 5. The area-time measure of various designs for VQ encoding.

The estimated circuit size of the four designs is shown in
Fig. 6, together with the total memory size for comparison.
Since the memory size is at least one order of magnitude
smaller than total circuit size, it is advantageous to distribute
the codebook throughout the array, thus eliminating the need
for a large external memory and complex addressing logic.

100000 X
Word-parallel
Bit-parallel
10000
Word-parallel :
1000} DBit-serial
Word-serial
100 Bit-seria

Circutt Size (million gates)

Word-serial
Bit-paxallel

0.01 L 1
16 20 24 28 32 36
Vector Dimension

Fig. 7. The total circuit size of various designs for VQ encoding.

V1. CONCLUSIONS

In this paper, we have presented a linear array structure
for vector quantization suitable for VLSI implementation. In
order to make the design truly scalable, control signals are
not broadcast but propagated through local and low-fanout
connections. Our design encompasses a data-driven control
scheme to maintain the pipelined and parallel operation
while providing the capability for handling the run-time
loading of codevectors, array initialization, and adaptive
update of codebook and vector dimension.

The main advantages of our design are the small circuit
size and I/O bandwidth requirement, operational capability
in the presence of faults, and flexibility to support changing
the parameters of the full-search VQ method. The data-
driven control scheme can also be combined naturally with
error detection and fault diagnosis to achieve more reliable
computation.

REFERENCES

[1] R. G. Cooper, "The Distributed Pipeline,” [EEE Trans. Computers, vol.
C-26, pp. 1123-1132, Nov. 1977.

[2] G. A. Davidson, P. R. Cappello, and A. Gersho, "Systolic Architectures for
Vector Quantization," [EEE Trans. Acoustics, Speech, and Signal
Processing, vol. ASSP-36, pp. 1652-1664, Oct. 1988.

[3]1 W.-C. Fang et al., "VLSI Systolic Binary Tree-Searched Vector Quantizer
for Image Compression," [EEE Trans. Very Large Scale Integration
(VLSI) Systems, vol. 2, pp. 33-44, Mar. 1994,

[4] A. Gersho and R. M. Gray, Vector Quantization and Signal Compression,
New York, NY: Kluwer Academic, 1991.

[5] H. Park and V. K. Prasanna, "Modular VLSI Architectures for Real-Time
Full-Search-Based Vector Quantization," IEEE Trans. Circuits and
Systems for Video Technology, vol. 3, pp. 309-317, Aug,. 1993,

[6] P.A. Ramamoorthy, B. Potu, and T. Tran, "Bit-Serial VLSI Implementation
of Vector Quantizer for Real-Time Image Coding," IEEE Trans. Circuits
and Systems, vol. 36, pp. 1281-1290, Oct. 1989.

[7] M. Yan, J. V. McCanny, and U. Hu, "VLSI Architectures for Vector
Quantization," J. VLSI Signal Processing, vol. 10, pp. 5-23, 1995.

1060

