$5 / 1811$
Homework - 6
1)
a)

$Q_{1}: C_{g s}=C_{g d}=0 \quad R_{d s}$ infinity
$Q_{2}: c_{g s}=200 \mathrm{fF}, \quad c_{g d}=0 \quad R_{d s}=$ infinity
$g_{m_{1}}=100 \mathrm{~ms}, \quad g_{m_{2}}=200 \mathrm{~ms}, \quad R=1000 \Omega \quad C=400 \mathrm{f}$

Small Signal equivalent is

b)

$$
\begin{align*}
-V_{\text {out }}+ & V_{s g_{1}}+V_{\text {gen }}=0 \\
& V_{s g_{1}}=V_{\text {out }}-V_{\text {gen }} \tag{1}
\end{align*}
$$

At B, write KCL

$$
\begin{align*}
& s c v_{\text {out }}+g_{m_{1}} v_{s g_{1}}+g_{m_{2}} v_{g s_{2}}=0 \\
& g_{m_{1}}\left[v_{\text {out }}-v_{g e n}\right]+g_{m_{2}} v_{g s 2}+s c v_{\text {out }}=0 \tag{2}
\end{align*}
$$

At A write kCl

$$
\begin{align*}
& -g_{m_{1} V_{s g_{1}}+\frac{v_{g s 2}}{R}+s c_{g s 2} v_{g s 2}=0} \\
& -g_{m_{1}}\left[v_{\text {out }}-v_{g e n}\right]+\frac{v_{g s 2}}{R}+s c_{g s 2} V_{g s 2}=0 \\
& V_{g s 2}\left[\frac{1}{R}+s c_{g s 2}\right]=g_{g_{1}}\left[V_{\text {out }}-v_{g \text { en }}\right] \\
& V_{g s 2}=\frac{g_{m 1} R\left[V_{\text {out }}-V_{g e n}\right]}{1+s R C_{g s 2}} \rightarrow(3) \tag{3}
\end{align*}
$$

Substitute (3) in (2)

$$
g_{m 1}\left[V_{\text {out }}-V_{\text {gen }}\right]+\frac{g_{m 2}\left[g_{m 1} R\left(V_{\text {out }}-V_{\text {gen }}\right)\right]}{1+s R C_{\text {gs } 2}}+s V_{\text {out }}=0
$$

\div Ven

$$
\left(g_{m_{1}} \frac{v_{\text {out }}}{v_{\text {gen }}}\right)+\left(g_{m_{1}}\right)+\left(\frac{g_{m_{1}} g_{m_{2}} R}{1+s R C_{g s 2}}\right)\left[\frac{v_{\text {out }}}{v_{\text {ger }}}-1+s c_{\frac{v_{\text {out }}}{v_{\text {gen }}}=0}\right.
$$

$$
\begin{aligned}
& \frac{V_{\text {oui }}}{V_{g e n}}\left[g m_{1}+\frac{g_{m} g_{m_{2}} R}{1+2 R C_{g_{22}}}+2 c\right]=9 m_{1}+\frac{g_{m} g_{m 2} R}{1+S R C_{g},}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{g_{m_{1}}\left[1+s R C_{g s 2}+g_{m g} R\right]}{1+s R C_{g s 2}} \\
& g_{m_{1}}\left[\frac{1+s R C_{g g_{2}}+g_{m_{2}} R}{1+s C_{g+2} R}\right]+s C \\
& \left.=\frac{g_{m_{1}}\left[1+\quad \& R C_{g s 2}+g_{m_{2}} R\right]}{g_{m_{1}}\left[1+g_{m 2} R\right]\left[1+s\left(\frac{c}{g_{m 1}}+R C_{g_{s 2}}\right)\right.}+s^{2} R C\right] \\
& =\left(\frac{1+\frac{s R C_{g 2}}{1+g_{m_{2}} R}}{8}\right) \\
& 1+s\left(\frac{R c_{g_{s 2}}+\frac{c}{g_{m 1}}}{1+g_{m_{2}} R}\right)+s^{2}\left(\frac{c_{g s_{2} R} \frac{c}{g_{m 1}}}{1+g_{m} R}\right)
\end{aligned}
$$

c) The denominator is of the for m

$$
\begin{aligned}
& \text { It } s\left(\frac{2 \xi}{\omega_{n}}\right)+\frac{s^{2}}{\omega_{n}^{2}} \\
& \omega_{n}^{2}=\frac{1+g_{m 2} R}{C_{g_{s 2}} R\left[\frac{C}{g_{m 1}}\right]} \\
& \omega_{n}{ }^{2}=\frac{201}{8 \times 10^{-22}} \\
& \omega_{n}=5.012 \times 10^{11} \mathrm{rad} / \mathrm{sec} \\
& f_{n}=\frac{w_{n_{F}}}{2 \pi}=79.81 \mathrm{Ghz} \\
& \}=\frac{\omega_{n}}{2}\left[\frac{R c_{g_{s 2}}+\frac{c}{g_{m_{1}}}}{1+g_{m_{2} R}}\right] \\
& =\frac{5.012 \times 10^{11}}{2}\left[\frac{\left(1000 \times 200 \times 10^{-15}\right)+\left(4 \times 10^{-12}\right)}{201}\right] \\
& =0.2543
\end{aligned}
$$

1) Zeros

$$
\begin{gathered}
\omega_{z}=\frac{1+g_{m 2} R}{R(g) 2}=1.005 \times 10^{12} \\
\theta_{z}=1.6 \times 10^{11} 1+2
\end{gathered}
$$

It hos two boles at

$$
\begin{aligned}
& =-12+10^{11}+j 4841 \times 10^{11} \\
& C_{p 2}=-1.27 \times 10^{11}-j 48477 \times 10^{11}
\end{aligned}
$$

Rootbous

e) Plot attached
e) $\log _{20}(s)=\frac{10^{-3}}{8}$

$$
\begin{aligned}
& V_{\text {out }}(8)=\left(\frac{10^{-3}}{3}\right)\left[1+8 \times 10^{-12}\right] \\
& 1+1.0147 \times 10^{-12} \mathrm{~s}+8^{2}\left(3.98 \times 10^{-24}\right) \\
& V \text { out }(s)=10^{-3}+10^{-15} \times 8 \\
& s+1.0147 \times 10^{-12} s^{2}+s^{3}\left(398 \times 10^{-24}\right)
\end{aligned}
$$

Take Inverse Laplace Transform

$$
\begin{aligned}
V \text { out }(t)=u(t)[0.001 & +\left(\left(10^{-3}\right)(-0.5-0.1227 j) e^{\left(-1.2747 \times 10^{11}+43640\right)}\right) \\
& +\left(\left(10^{-3}\right)(-0.5+01227 j) e^{\left.\left(-1.274 \times 10^{11}-4.84 \times 10^{11} j\right) t\right)}\right]
\end{aligned}
$$

Seethe plot attached.

Output waveform

Problem 2

Frames the Graph, Syetern has thees zees at origen and it poles.

Polis ans touted

$$
\mathrm{CA}_{\mathrm{PI}}=-(+3+\cdots)^{4}+j\left(2+\times 10^{9}\right)
$$

$$
\omega_{P_{2}}=-0.3 \times 10^{9} \quad t-j\left(2.6 \times 10^{9}\right)
$$

$$
W D 3=-0.3 \times 10^{9}+j\left(3.4 \times 10^{9}\right)
$$

$$
\omega p 4=-0.310+10+3 \times 10^{9}-j\left(3 \cdot 4 \times 10^{9}\right)
$$

$$
\text { Ups }=-0.5 \times 10^{9}+5\left(3 \times 10^{9}\right)
$$

$$
\omega_{p b}=-0.5 \times 10^{4}+j\left(3 \times 10^{9}\right)
$$

Write equation in terms

$$
=\frac{1 c s^{3}}{(s-p i) s-8)}
$$

to calculate k
$H(S)=$

$$
=\frac{k}{\left(s^{2}+6 \times 10^{8} s+6.85 \times 10^{18}\right)\left(s^{2}+6 \times 00^{8}+1+65 \times 00^{19}\right)}\left(b^{2}+108+925 \times 00^{18}\right)
$$

When $s=j\left(3 \times 10^{9}\right), H(s)=1$

$$
\begin{aligned}
& H(S)=k+(j w)^{3} \\
& \left.\left[6.85 \times 10^{18}-\omega^{2}+j 6 \times 10^{8} b\right]^{2}+j .165 \times 10^{19}-\omega^{2}+j 6 \times 10^{8} \omega\right] \\
& {\left[925 \times 10^{18}-\omega^{2}+j 10^{9} \omega\right]}
\end{aligned}
$$

$$
\left(-j \omega^{3}\right) k=\left[-2.15 \times 10^{18}+j 1.8 \times 10^{18}\right]\left[2.65 \times 10^{18}+j 1.8 \times 10^{18}\right]\left[2.5 \times 10^{17}+3 \times 10^{18} i^{2}\right]
$$

Take Modulus on both sides

$$
\begin{aligned}
& \omega^{3} k=\left(2.80 \times 10^{18}\right)\left(3.203 \times 10^{18}\right)\left(3.01 \times 10^{18}\right) \\
& K=1.000 \times 10^{t^{27}} \\
& H(s)=k^{3} \\
& A\left(1-\frac{s}{\omega_{p 1}}\right)\left(1-\frac{s}{\omega_{p 2}}\right)\left(1-\frac{s}{\omega_{p 3}}\right)\left(1-\frac{s}{\omega_{p 4}}\right)\left(1-\frac{s}{\omega_{p} s}\right)\left(1-\frac{s}{\omega_{p 6}}\right)
\end{aligned}
$$

where $A=\omega_{p_{1}} \omega_{p 2} \omega_{p 3} \omega_{p 4} \omega_{p 5} \omega_{p 6}$
b) To plot the Bode plot

Calculate the three quadratic pole frequencies

$$
\begin{aligned}
\text { pole froçuences } & \left.\begin{array}{rl}
8 \\
s^{2}+6 \times 10^{8} 8+85 \times 10^{18} & =6085 \times 10^{18}\left[\frac{s^{2}}{6.85 \times 10^{18}}+6 \times 10^{8}\right. \\
6.85 \times 10^{18}
\end{array}\right] \\
& =6.85 \times 10^{18}\left[1+\frac{2 \varepsilon_{4}}{\omega_{n}}+\frac{s^{2}}{\omega_{n}^{2}}\right]
\end{aligned}
$$

Where $\omega_{n}^{2}=6.85 \times 10^{18}, \omega_{n_{1}}=2.61 \times 10^{9} \mathrm{rad} / \mathrm{bec} \quad f_{n}=416^{15} \mathrm{Mhz}$

Similarly calculate the others two pole frequencies

$$
\begin{aligned}
& 8^{2}+6 \times 10^{8} s+1165 \times 10^{19}=1.165 \times 10^{19}\left(1+5+1502+10^{11} 2+2^{2}\right) \\
& \therefore n_{n}^{2}=165 \times 10^{19} \\
& \omega_{n_{2}}=3.413 \times 10^{9} \mathrm{rad} / \mathrm{sec} \\
& f_{n=}=543.47 \mathrm{Mhz} \\
& 5^{2}+10^{9} s+9.25 \times 10^{18} \quad 925 \times 10^{18}\left[1+1.08+10^{10} 5+\frac{3^{2}}{9.25 \times 10^{12}}\right] \\
& \omega_{n}^{3}=9.25110^{18} \\
& \omega_{n}=3041110^{9} \\
& f_{n 3}=484.29 \mathrm{Mnz} \\
& \therefore H(y)=1.3546 \times 10^{-30} 8^{3} \\
& \left(1+8 \cdot 759 \times 10^{-11} 8+1.459 \times 100^{-19} 5^{2}\right)\left(1+5 \cdot 15 \times 100^{-1} 8+8 \cdot 5837000^{20} z^{2}\right) \\
& +\left[1+1.06 \times 10^{-10} 8+1081410^{10} 8\right]
\end{aligned}
$$

Problem 3 (1)

$$
\begin{aligned}
& R_{\text {ord }}=50 \Omega \\
& \left(\frac{\mu l_{0 x} W_{g}}{2 L_{g}}\right)=1 \frac{\mathrm{~mA}}{\mathrm{~V}^{2}} \\
& \lambda=0.05 \mathrm{~V}^{-1} \\
& V_{\text {th }}=0.3 \mathrm{~V}
\end{aligned}
$$

a)

$$
\begin{aligned}
& I d=\left(\frac{\mu l_{0 x} w_{g}}{2 L_{g}}\right)\left(V_{g s}-v_{t h}\right)^{2}\left(1+\lambda V_{D S}\right) \\
& \text { Neglect } \lambda v_{d s} \\
& 0.1 \mathrm{~mA}=1 \mathrm{~mA} / v^{2} \quad\left[V_{\text {in }}-0.3\right]^{2} \\
& 0.1=\left[V_{\text {in }}-0.3\right]^{2} \\
& V_{\text {in }}{ }^{2}+0.09-0.6 V_{\text {in }}=0.1 \\
& V_{\text {in }}{ }^{2}-0.6 V_{\text {in }}-0.01=0 \\
& V_{\text {in }}=0.616 \mathrm{~V}
\end{aligned}
$$

b)

$$
\begin{aligned}
V_{D D} & =3.3 \mathrm{~V} \\
V_{D} & =1.5 \mathrm{~V} \\
R_{L} & =\frac{V_{D D}-V_{D}}{0.1 \mathrm{~mA}} \\
& =\frac{1.8}{0.1 \mathrm{~mA}}=18 \mathrm{k} \Omega
\end{aligned}
$$

c)

$$
\begin{aligned}
g_{m} & =\frac{\partial I d}{\partial V_{g S}} \\
& =\left(\frac{\mu l o x W_{g}}{\partial h_{g}}\right)\left[1+\lambda V_{d s}\right]\left[2\left(V_{g s} V_{t h}\right)\right] \\
& =\frac{1 \mathrm{~mA}}{V^{2}}[1+(005 \times 1.5)][2(0.616 .0 .3)] \\
& =\frac{1 \mathrm{~mA}}{V^{2}} \times 1.075 \times 0.632 \\
& =0.679 \mathrm{~ms}^{s}
\end{aligned}
$$

$$
\begin{aligned}
g_{d s}=\frac{\partial I_{D}}{\partial D S} & =\left(\frac{\mu_{L_{0 x}} W_{g}}{2 L g}\right)\left(V_{g S}-V_{t n}\right)^{2}[\lambda] \\
& =\frac{1 m^{A}}{v^{2}} \times 0.0998 \times 0.05 \\
& =4.992 \times 10^{-6}
\end{aligned}
$$

$$
R d s=2002 \times 10^{5} \Omega
$$

Write KCL at node A

$$
\begin{align*}
& \frac{V_{\text {in }}}{R_{\text {gen }}}+\frac{V_{\text {gen }}}{R_{g \text { gen }}}+V_{\text {in }} s C_{g s}+\frac{V_{\text {in }}}{s L}=0 \\
& V_{\text {in }}\left[G_{\text {gen }}+\frac{1}{s L}+s c_{g s}\right]=\frac{V_{\text {gen }}}{R_{g e n}} \\
& V_{\text {in }}=\frac{V_{\text {gen }}}{1+\frac{R_{g e n}}{s L}+s R_{\text {gen }} C_{g s}} \tag{1}
\end{align*}
$$

Write Kot at B

$$
\begin{aligned}
& 9_{m} V_{g s}+\frac{V_{\text {but }}}{R_{\text {ent }}}=0 \\
& g_{m n} V_{\text {in }}+\frac{V_{\text {es }}}{V_{\text {out }}}=0
\end{aligned}
$$

sunstinue (1) in (2)

$$
\begin{aligned}
& g_{m} V_{g e n} \\
& 1+\frac{\text { Pgen }}{51}+8 \operatorname{lagen}^{5} \text { G } \\
& +\frac{V_{001}}{R_{m o s}}=0 \\
& \left(\frac{V_{0 u t}}{V_{g a n}}\right)\left(\frac{1}{8 o u t}\right)\left(\frac{8 m}{8 L^{2}}+8^{2} g \operatorname{gen}^{\prime} g^{\prime}\right. \\
& \frac{\text { Vout }}{\text { Vgen }} \\
& =-g_{m} K_{\text {out }} \\
& 1+\frac{\text { pgen }}{8 L}+2 \sin ^{\prime} \text { gs } \\
& \text { Rout }=18 k \pi \|\left(2+10^{5}\right) \\
& =16.513 \times \Omega \\
& \text { Kgn - } 50 \Omega \\
& L=0.797 \text { k H } \\
& \text { Cgs }=318 \mathrm{pf}
\end{aligned}
$$

$\frac{V_{\text {out }}}{V_{\text {gen }}}$

$$
\begin{aligned}
& =\frac{\left(-g_{m} R_{\text {out }}\right) s L}{s L+R_{\text {gen }}+s^{2} L R_{\text {gen }} C_{g s}} \\
& =\left(-g_{m} \text { Rout } L\right) \text { s } \\
& \text { ger }\left[1+s\left(\frac{L}{R_{\text {gen }}}\right)+s^{2}\left(L C_{g s}\right)\right] \\
& =\frac{k}{1+s a+s^{2} b} \\
& k=\frac{g_{m} R_{\text {out }} L}{\text { agon }} \quad\left(\frac{A}{V} \times \Omega \cdot s\right) \\
& =-1.78 \times 10^{-10} \\
& a=\frac{L}{\text { gen }}=1.594 \times 10^{-11} \\
& b=\operatorname{Lg} \text { gs } 2.5344 \times 10^{.20}
\end{aligned}
$$

> The two proses occurn at

$$
\begin{aligned}
& { }^{P_{P 1}}=-0.313 \times 10^{9}+6 \times 33 \times 10^{9} j \\
& S_{P_{2}}=-0313 \times 10^{9}-6.273 \times 10^{9} j
\end{aligned}
$$

$$
\therefore H(s)=k s
$$

$$
-p_{1}\left(1-\frac{s}{s_{p 1}}\right)\left(-s_{p 2}\right)\left(1-\frac{s}{s_{p x}}\right)
$$

$$
=k \&
$$

$$
\left(s_{p_{1}} s_{P_{2}}\right)\left(1-\frac{s_{p}}{s_{P_{1}}}\right)\left(1-\frac{8}{s_{P Q}}\right)
$$

$$
=\frac{k}{\left(\frac{3.944 \times 10^{19}}{\left(1-\frac{8}{8 p 1}\right)}\left(1-\frac{8}{6 p^{2}}\right)\right.}
$$

$$
\begin{array}{ll}
2 \% \\
x & j \omega \\
6213910^{9}
\end{array}
$$

a) Plot Attached
(4)
h)' $V_{\text {'ut }}$
$V_{\text {gen }}$

$$
\frac{\left(-1+8 \times 10^{-10}\right) s}{1+8\left(1.594 \times 10^{-11}\right)+s^{2}\left(2.544 \times 10^{-20}\right)}
$$

$$
V_{\operatorname{gen}}(s)=\frac{10^{-3}}{6}
$$

$$
V_{\text {out }}(5)=\frac{\left(-\frac{10^{3}}{9}\right)\left(178 \times 10^{10}\right) s}{1+s\left(1.594 \times 10^{-11}\right)+s^{2}\left(2544 \times 10^{-20}\right)}
$$

$$
=\frac{0.5597 \times 10^{-3} j}{\&-\left(-0.3188 \times 10^{9}+6.2667 \times 10^{\circ} j\right)}-\frac{0.5599 \times 10^{-3} j}{-\left(0.2138 \times 10^{9}-620 . \times 10 j\right)}
$$

$$
\begin{array}{r}
V_{\text {out }}(t)=\left(0.5599 \times 10^{-3} j\right)\left[\begin{array}{l}
\left(-0.3238 \times 10^{\circ}+626 \times 10^{9} j\right) t \\
e
\end{array}\right] \\
\left.e^{=\left(0.313 \times 10^{4}+6266 \times 10 j\right) t}\right]
\end{array}
$$

\Rightarrow Plotatfached
3)

For the Bode plot
$H(s)$ is if the form

$$
H(s)=\frac{2\left(\frac{2 \xi}{\omega n}\right.}{\frac{s^{2}}{4 n^{2}}}+\left(\frac{2 \xi 8)+1}{(4 n)}\right.
$$

Inthos case $k=11.166$
Whadratie pole at $u_{n}=6.26 a \times 0$ may le
Tear at the soizesin

$$
\text { Sn }+2 \cdot 018 \times 108+2
$$

Output response

