EV Group

Plasma Activated Wafer Bonding

Markus Wimplinger

Corporate Technology Development and IP Director 2011/08/23

The results presented in this slideshow presentation were created by Dipl.-Ing. Thomas Plach within the framework of a Ph.D. Thesis.

The thesis is carried out in a cooperation between the Christian Doppler Laboratory for Microscopic and Spectroscopy Material Characterization (CDL-MS-MACH) at the Johannes Kepler University Linz and EV Group.

Outline – Process Review

Mechanism behind bond strengthening for fusion bonds

reference process: wet chemical surface preparation

Si-SiO₂ Hydrophilic Bonding RT - 110°C

 $\text{Si} + 2\text{H}_2\text{O} \rightarrow \text{SiO}_2 + 2\text{H}_2$

Si-SiO₂ Hydrophilic Bonding 110 - 150°C

$\begin{array}{lll} \text{Si-OH} + \text{HO-Si} \rightleftharpoons & \text{Si-O-Si} + \text{H}_2\text{O} \\ \\ \text{Si} + 2\text{H}_2\text{O} \rightarrow & \text{SiO}_2 + 2\text{H}_2 \end{array}$

Si-SiO₂ Hydrophilic Bonding 150 - 800°C

$\begin{array}{lll} \text{Si-OH} + \text{HO-Si} \rightleftharpoons & \text{Si-O-Si} + \text{H}_2\text{O} \\ \\ \text{Si} + 2\text{H}_2\text{O} \rightarrow & \text{SiO}_2 + 2\text{H}_2 \end{array}$

Si-SiO₂ Hydrophilic Bonding above 800°C

Gösele Model - Summary

Gap closing due to viscous flow of oxide during high temperature annealing

Published Models & thoughts for Plasma Activated Wafer Bonding

<u>EVG:</u>

- Only gentle surface change / gentle plasma
- Break surface bonds and make surface more reactive

 → dangling bonds
- Remove contamination

Other groups:

- Surface activation increases density of OH groups on surface
- Disordered surface structure
- Porous system traps water
- Plasma cleans surfaces

These models don't fully explain...

- How gaps are closed
- Why plasma activation effect lasts for several weeks and even months if wafers are stored.
- Why in-situ plasma activated bonding does not reliably yield good results

Research Approach

- Analytical Methods to characterize surface changes due to plasma activation
 - AFM
 - Ellipsometry
 - Auger
 - XPS
 - etc.
- Investigation of bonded interfaces
- Based on analytical data and bond behavior:
 - Find an appropriate model that describes the mechanism of plasma activated bonding.

AFM samples

- samples were half covered by other wafer pieces during activation
- therefore on one sample both an activated and an nonactivated side was available
- Initially, AFM was used to confirm the effect of plasma activation on surface roughness.
- A step profile created on the surface was discovered / measured during this investigation as well.

AFM: Step-Analysis

AES samples

- samples were half covered by other wafer pieces during activation
- therefore on one sample both an activated and an nonactivated side was available
- both sides were analyzed in one common depth profile → sputter conditions were equal
- native oxide thickness was measured with Spectroscopic Ellipsometry → depth reference for the depth profile data

Auger Analysis – Comparison a and na

Bond Strength PAWB - no annealing

Bond Strength PAWB - annealing @ 50°C

Bond Strength PAWB - annealing @ 100°C

Bond Strength PAWB - annealing @ 200°C

G

Bond Strength PAWB - annealing @ 300°C

Bond Strength PAWB - annealing @ 400°C

Bonding Experiment: Si-SiO₂ with annealing @ 400° C

Which Wafer is more important (2)

inv

New Model for Plasma Activated Wafer Bonding

Several patents pending for the model presented in the next slides.

New Model for Plasma Activated Wafer Bonding

Processes at the Bonding Interface

Summary of the New Model

- create a reservoir for a reactant (e.g. H₂O) which can oxidize the substrate
- fill the reservoir with the reactant
- Slightly elevate temperature in order to allow reaction between reactant and reaction layer

Some Data Points / Trends

- For Th. Ox Si bonding, it is more important to activate the Th. Ox wafer.
 - \rightarrow Reservoir is needed in the Th.Ox wafer.
 - \rightarrow Activation of the native Ox assists, as it makes the native Ox more permeable to diffusion.
- For Deposited (TEOS, etc.) Ox Si bonding, it is more important to activate the native Ox wafer
 → Deposited Ox is already more porous and therefore, in some cases (depending on oxide quality) able to store humidity.
 - \rightarrow Activation of the native Ox makes the native Ox more permeable to diffusion.

Some Data Points / Trends

- For therm. Ox to Si, N2 activation shows a tendency of slightly better results. This is believed to be related to the fact that N2 is present as N2 ions while O2 is present as O ions.
- For bonding of native oxide to native oxide, short activation times with O2 are recommended, as implanted O2 can be converted to SiO2 during annealing.

 \rightarrow Excessive amounts of O2 will still lead to bubbles formation (see results)

Examples for Bonding based on Oxidation

- a ... activated surface
- (a) ... optionally activated surface

Voids - Si with Si – after 2h @ 300°C

Voids - Si with Si – after 2h @ 300°C

