Silicon Photonics:

From Device Engineering to Large-Scale System Integration

Jie Sun

Research Laboratory of Electronics Massachusetts Institute of Technology February 27, 2014

What is Silicon Photonics

Optical Technology

CMOS Fabrication Techniques

Images from Internet

Silicon Photonics

- Silicon (and other compatible materials) as the material for photonics
- Accessible to well-developed CMOS processing technology

Silicon Photonics: A Rich Device Library

Silicon Photonics Device Library

Silicon Photonic Devices

- High-refractive-index contrast: compact devices, integration
- Electro/Thermo-optic effects: active devices
- Hybrid integration: light sources

Silicon Photonics: From Devices to Systems

System Integration: A Unique Advantage of Si Photonics

• CMOS Compatibility: wafer-scale & nm-precision manufacturing; electronic-photonic integration; large scale (Moore's Law)

Silicon Photonics: From Devices to Systems

System Integration: A Unique Advantage of Si Photonics

• CMOS Compatibility: wafer-scale & nm-precision manufacturing; electronic-photonic integration; large scale (Moore's Law)

Integrated Optical Phased Array

- The ultra-compact unit cell
- Optical beam steering and manipulation

Arbitrary Beamform Generation

- Generating arbitrary beamforms: Gaussian, OAM, etc. OAM₊₄ OAM₋₄

Large-Scale Phased Array

- Optical phased array w/ up to 4,096 antennas - Largest silicon photonic circuit to date

Applications & Future Work

- LADAR, signal processing, communication, sensing, etc.

- Devices and materials

Integrated Optical Phased Array

- The ultra-compact unit cell
- Optical beam steering and manipulation

Arbitrary Beamform Generation

- Generating arbitrary beamforms: Gaussian, OAM, etc. OAM₊₄ OAM₋₄

The Unit Cell An 8 imes 8 Phased Array Faster and More Power Efficient

Large-Scale Phased Array

- Optical phased array w/ up to 4,096 antennas - Largest silicon photonic circuit to date

Applications & Future Work

- LADAR, signal processing, communication, sensing, etc.

- Devices and materials

The Unit Cell An 8×8 Phased Array Faster and More Power Efficient

Phased Array: A Well-Known Technology

F22 Raptor

PAVE PAWS: ALASKA

PAVE PAWS: CALIFORNIA

Phased Array: From Microwave to Lightwave

- Phased Array: beamshaping with an array of antennas
- Optical Phased Array: small $\lambda \rightarrow$ compact systems

Large-Scale Phased Array Arbitrary Beamform Generation Applications & Future Work The Unit Cell An 8×8 Phased Array Faster and More Power Efficient

Optical Phased Array: A Longer History

The Simplest Optical Phased Array

- Principle: interference & Fourier transform
- Antenna spacing: $d \sim \lambda \rightarrow$ opportunity for Si Photonics

The Unit Cell An 8×8 Phased Array Faster and More Power Efficient

Integrated Optical Phased Array: Previous Work

J. Doylend, et al, OE, 2011

K. van Acoleyan, et al, OE, 2010

Our Goal • Large-Scale: thousands ~ millions of antenna • Two-Dimensional: full control of the radiation field

The Unit Cell An 8×8 Phased Array Faster and More Power Efficient

Large-Scale Two-Dimensional Phased Array: Challenges

Break the Scaling-Up Limitation: Challenges

• Architecture: Parallel Feeding vs. Series Feeding

Jie Sun, et al, Nature, 493, pp. 195-199 (2013)

Silicon Photonics

The Unit Cell An 8×8 Phased Array Faster and More Power Efficient

Large-Scale Two-Dimensional Phased Array: Challenges

Series Feeding

Break the Scaling-Up Limitation: Challenges

- Architecture: Parallel Feeding vs. Series Feeding
- Ultra-Compact Unit Cell: Tunable Phase Shifter, Antenna, and Coupler

Jie Sun, et al, Nature, 493, pp. 195-199 (2013)

Silicon Photonics

Integrated Optical Phased Array Arbitrary Beamform Generation

The Unit Cell

Tunable Phase Shifter: Indirect vs. Direct Heating

Large-Scale Phased Array Arbitrary Beamform Generation Applications & Future Work The Unit Cell An 8×8 Phased Array Faster and More Power Efficient

Adiabatic Bend: Low-Loss Silicon Contact

Direct contact

Low-loss silicon contact

• Direct Contact: scattering loss

The Unit Cell An 8×8 Phased Array Faster and More Power Efficient

Adiabatic Bend: Low-Loss Silicon Contact

Direct contact

Adiabatic transition

Low-loss silicon contact

- Direct Contact: scattering loss
- Adiabatic: low loss

The Unit Cell An 8×8 Phased Array Faster and More Power Efficient

Adiabatic Bend: Low-Loss Silicon Contact

Jie Sun

The Unit Cell An 8×8 Phased Array Faster and More Power Efficient

Tunable Phase Shifter: Power & Speed

Silicon Photonics

12 / 47

Large-Scale Phased Array Arbitrary Beamform Generation Applications & Future Work

The Unit Cell An 8×8 Phased Array Faster and More Power Efficien

High-Efficiency Optical Emitter

The Unit Cell An 8×8 Phased Array Faster and More Power Efficient

High-Efficiency Optical Emitter

High-Efficiency Optical Emitter

- Compact: $2.8\mu m \times 3.5\mu m \rightarrow Broadband$
- **Directionality:** Partial-Etch \rightarrow 51%[†], 35% \downarrow
- Anti-Reflection: $\Lambda < \lambda$

3.5 μm

Integrated Optical Phased Array Large-Scale Phased Array Arbitrary Beamform Generation

The Unit Cell An 8×8 Phased Array Faster and More Power Efficient

Directional Couplers

Large-Scale Phased Array Arbitrary Beamform Generation Applications & Future Work

The Unit Cell

Unit Cell Directional Coupler K(*L*) Pres Act(*L*) Unit Cell

The Unit Cell

- Size: 9μm×9μm
- Fabrication: 2 Dopings, 2 Metals

The Unit Cell An 8×8 Phased Array Faster and More Power Efficient

Top View

Cross Section

Silicon Photonics

Large-Scale Phased Array Arbitrary Beamform Generation Applications & Future Work The Unit Cell An 8×8 Phased Array Faster and More Power Efficient

An 8×8 Phased Array

An 8×8 Phased Array

• Electrical Connections: 8×8 (Column)+8 (Row) = 72 heaters

Jie Sun, et al, Nature, 493, pp. 195-199 (2013)

Large-Scale Phased Array Arbitrary Beamform Generation Applications & Future Work The Unit Cell An 8×8 Phased Array Faster and More Power Efficient

Near- and Far-Field Measurement

Large-Scale Phased Array Arbitrary Beamform Generation Applications & Future Work The Unit Cell An 8×8 Phased Array Faster and More Power Efficient

Optical Beam Shaping

research Laboratory

Large-Scale Phased Array Arbitrary Beamform Generation Applications & Future Work The Unit Cell An 8×8 Phased Array Faster and More Power Efficient

Dynamic Optical Beam Shaping

Movie: Dynamic beam shaping

Optical Beam Shaping

• Thermal Efficiency: 8.5 mW per π phase shift per heater

Large-Scale Phased Array Arbitrary Beamform Generation Applications & Future Work The Unit Cell An 8×8 Phased Array Faster and More Power Efficient

Next: Faster, and Less Energy Consumption

Free-Carrier Plasma Dispersion Effect

- Pros: Fast (ns) & less Energy
- Cons: Very small effect

The Unit Cell An 8×8 Phased Array Faster and More Power Efficient

Next: Faster, and Less Energy Consumption

The Unit Cell An 8×8 Phased Array Faster and More Power Efficient

Next: Faster, and Less Energy Consumption

Phased Array Synthesis Implementation and Measurements Toward 3D Electronic-Photonic Integration

Integrated Optical Phased Array

- The ultra-compact unit cell
- Optical beam steering and manipulation

Arbitrary Beamform Generation

- Generating arbitrary beamforms: Gaussian, OAM, etc. OAM₊₄ OAM₋₄

Large-Scale Phased Array

- Optical phased array w/ up to 4,096 antennas - Largest silicon photonic circuit to date

Applications & Future Work

- LADAR, signal processing, communication, sensing, etc.

- Devices and materials

Large-Scale Phased Array Arbitrary Beamform Generation

Phased Array Synthesis

Large-Scale Phased Array: Motivation

Phased Array Synthesis Implementation and Measurements Toward 3D Electronic-Photonic Integration

Large-Scale Phased Array Synthesis

Large-Scale Phased Array Synthesis

- Approach: Fourier transform w/ a constraint (uniform near-field intensity)
- Example: 64×64
- Performance: fast convergence

Silicon Photonics

Phased Array Synthesis Implementation and Measurements Toward 3D Electronic-Photonic Integration

Large-Scale Phased Array Synthesis

Movie: Large-Scale Phased Array Synthesis

Large-Scale Phased Array Synthesis

- Approach: Fourier transform w/ a constraint (uniform near-field intensity)
- Example: 64×64
- Performance: fast convergence

Phased Array Synthesis Implementation and Measurements Toward 3D Electronic-Photonic Integration

Implementation: A Large-Scale Si-Photonic PIC

Large-Scale Optical Phased Array

• Phase: 'hard-coded' in the unit cell, φ_{mn}

Phased Array Synthesis Implementation and Measurements Toward 3D Electronic-Photonic Integration

Fabricated Large-Scale Optical Phased Array

Phased Array

Unit Cell

CMOS-Compatible Si Photonic Process Unit Cell: 9μm×9μm (multiple times of operating λ = 1.55μm) Phased Array System: 0.576mm×0.576mm (64×64)

Phased Array Synthesis Implementation and Measurements Toward 3D Electronic-Photonic Integration

Near Field Measurement

research Laboratory of electronics AT MI

Phased Array Synthesis Implementation and Measurements Toward 3D Electronic-Photonic Integration

Near Field Measurement

rle of electronics at Mit
Phased Array Synthesis Implementation and Measurements Toward 3D Electronic-Photonic Integration

Near Field Measurement

Phased Array Synthesis Implementation and Measurements Toward 3D Electronic-Photonic Integration

Far Field Measurement

Far Field

- Result: 4,096 unit cells, 12,288 Si-Photonic components
- Impact: Largest (Optical) Phased Array & Si PIC; Power of Si-Photonics

The RESEARCH LABORATORY OF ELECTRONICS AT MIT Jie Sun, et al, *Nature*, **493**, pp. 195-199 (2013) Silicon Photonics 2

Phased Array Synthesis Implementation and Measurements Toward 3D Electronic-Photonic Integration

Far Field Measurement

Far Field

- Result: 4,096 unit cells, 12,288 Si-Photonic components
- Impact: Largest (Optical) Phased Array & Si PIC; Power of Si-Photonics

Phased Array Synthesis Implementation and Measurements Toward 3D Electronic-Photonic Integration

Toward Reconfigurable Large-Scale Optical Phased Array

Phased Array Synthesis Implementation and Measurements Toward 3D Electronic-Photonic Integration

Toward Reconfigurable Large-Scale Optical Phased Array

Phased Array Synthesis Implementation and Measurements Toward 3D Electronic-Photonic Integration

Toward Reconfigurable Large-Scale Optical Phased Array

Phased Array Synthesis Implementation and Measurements Toward 3D Electronic-Photonic Integration

Electronic-Photonic 3D Integration

Integrated Optical Phased Array Large-Scale Phased Array Arbitrary Beamform Generation

Toward 3D Electronic-Photonic Integration

Fabricated Photonics

Heaters 3D Via 5 um

Phased Array

Unit Cell

Electronic-Photonic Integration Photonics: 32×32 phased array, $20 \mu m$ unit cell size **Electronics:** Δ - Σ circuit (under development) Integration: Challenging, but promising

• ٠

0

Gaussian Beam Generation Optical Vortex Beam

Integrated Optical Phased Array

- The ultra-compact unit cell
- Optical beam steering and manipulation

Arbitrary Beamform Generation

- Generating arbitrary beamforms: Gaussian, OAM, etc. OAM₊₄ OAM₋₄

Large-Scale Phased Array

- Optical phased array w/ up to 4,096 antennas - Largest silicon photonic circuit to date

Applications & Future Work

LADAR, signal processing, communication, sensing, etc.

- Devices and materials

Gaussian Beam Generation Optical Vortex Beam

Arbitrary Beamform Generation: Principle

Gaussian Beam Generation Optical Vortex Beam

Arbitrary Beamform Generation: Principle

Gaussian Beam Generation Optical Vortex Beam

Example: Generating A Gaussian Beam

Gaussian Beam Array

Jie Sun, et al, CLEO Postdeadline, San Jose, 2013

Gaussian Beam Generation Optical Vortex Beam

Example: Generating A Gaussian Beam

Jie Sun, et al, CLEO Postdeadline, San Jose, 2013

Near field Far field

Uniform Arrav

Gaussian Beam Generation Optical Vortex Beam

Example: Generating A Gaussian Beam

Gaussian Beam Array

Jie Sun, et al, CLEO Postdeadline, San Jose, 2013

Gaussian Beam Generation Optical Vortex Beam

Dynamic Beam Manipulation

Gaussian Beam Generation Optical Vortex Beam

Optical Vortex Beam: A Twist of Light

Jie Sun

Wavefront of an OAM_{+4} Beam

Optical Vortex/ Orbital Angular Momentum (OAM)

 Definition: E ~ exp(j · l · θ) l ∈ Z: topological charge, OAM: L = lħ

Silicon Photonics

Gaussian Beam Generation Optical Vortex Beam

Optical Vortex Beam: A Twist of Light

J. E. Curtis & D. G. Grier, PRL, 90, 2003

Optical Vortex/ Orbital Angular Momentum (OAM)

- Definition: E ~ exp(j · l · θ)
 l ∈ ℤ: topological charge, OAM: L = lħ
- Applications:
 - Optical trapping

Gaussian Beam Generation Optical Vortex Beam

Optical Vortex Beam: A Twist of Light

A. E. Willner, et al, Nat. Photon., 6, 488-96, 2012

Optical Vortex/ Orbital Angular Momentum (OAM)

- **Definition:** $E \sim \exp(j \cdot l \cdot \theta)$
 - $l \in \mathbb{Z}$: topological charge, OAM: $L = l\hbar$
- Applications:
 - Optical trapping
- Optical space division multiplexing

Gaussian Beam Generation Optical Vortex Beam

Optical Vortex Beam: A Twist of Light

N. Bozinovic, et al, Science, 340, 1545-48, 2013

Optical Vortex/ Orbital Angular Momentum (OAM)

- Definition: E ~ exp(j · l · θ)
 l ∈ ℤ: topological charge, OAM: L = lħ
- Applications:
 - Optical trapping
- Optical space division multiplexing

Gaussian Beam Generation Optical Vortex Beam

Generating OAM: An Integrated Silicon Photonic Solution

Gaussian Beam Generation Optical Vortex Beam

Generating OAM: An Integrated Silicon Photonic Solution

Gaussian Beam Generation Optical Vortex Beam

Generating OAM: An Integrated Silicon Photonic Solution

Near-field Intensity

Gaussian Beam Generation Optical Vortex Beam

Generating OAM: An Integrated Silicon Photonic Solution

rle RESEARCH LABORATOR

Gaussian Beam Generation Optical Vortex Beam

Generating OAM: An Integrated Silicon Photonic Solution

rle RESEARCH LABORATOR

Jie Sun

Silicon Photonics

Gaussian Beam Generation Optical Vortex Beam

Generating OAM: An Integrated Silicon Photonic Solution

rle RESEARCH LABORATON

Jie Sun

Gaussian Beam Generation Optical Vortex Beam

Detecting Topological Charge *l*

OAM+4

OAM_4

Gaussian Beam Generation Optical Vortex Beam

Detecting Topological Charge *l*

Gaussian Beam Generation Optical Vortex Beam

Detecting Topological Charge *l*

Gaussian Beam Generation Optical Vortex Beam

Detecting Topological Charge *l*

Q: How to interfere two beams?

Gaussian Beam Generation Optical Vortex Beam

Detecting Topological Charge *l*

Q: How to interfere two beams?

• Thorlabs Solution: Free space

Gaussian Beam Generation Optical Vortex Beam

Detecting Topological Charge *l*

Q: How to interfere two beams?

- Thorlabs Solution: Free space ...
- Our Solution: Silicon photonics!

Gaussian Beam Generation Optical Vortex Beam

Gaussian Beam Generation Optical Vortex Beam

Gaussian Beam Generation Optical Vortex Beam

Gaussian Beam Generation Optical Vortex Beam

Gaussian Beam Generation Optical Vortex Beam

Interference at An Angle

Interference w/ an angle

Arbitrary Beamform Generation

Optical Vortex Beam

Interference at An Angle

Interference w/ an angle

Arbitrary Beamform Generation

Optical Vortex Beam

Interference at An Angle

Interference w/ an angle

Gaussian Beam Generation Optical Vortex Beam

Application: Space Division Multiplexing

Space Division Multiplexing

Gaussian Beam Generation Optical Vortex Beam

Next: Toward OAM w/ Reconfigurable Topological Charge l

Tunable OAM

- Motivation: Space division multiplexing, etc.
- Circular Array: $\theta = m \cdot \Delta \theta$
- Tunable Phase Shifter: $\Delta \varphi(V)$
- Emitting Field: $E \sim e^{j \cdot m \Delta \varphi(V)}$ when $\Delta \varphi(V) = l \cdot \Delta \theta \rightarrow E \sim e^{j \cdot l(m \Delta \theta)} = e^{j \cdot l \theta}$

Tunable Phase Shifter

Circular Antenna Array

Gaussian Beam Generation Optical Vortex Beam

Reconfigurable OAM: Simulation

Reconfigurable OAM

• Inline Heater: to change topological charge $l = \frac{\Delta \varphi(V)}{\Delta \theta}$

Gaussian Beam Generation Optical Vortex Beam

Reconfigurable OAM: Simulation

Reconfigurable OAM

- Inline Heater: to change topological charge l = Δφ(V)/Λθ
- Pre-Line Heater: to visualize the spiral wavefront

Integrated Optical Phased Array

- The ultra-compact unit cell
- Optical beam steering and manipulation

Arbitrary Beamform Generation

- Generating arbitrary beamforms: Gaussian, OAM, etc. OAM₊₄ OAM₋₄

Optical Phased Array Communication and Computation Optical/Microwave Signal Processing Devices and Materials

Large-Scale Phased Array

Optical phased array w/ up to 4,096 antennas
 Largest silicon photonic circuit to date

Applications & Future Work

- LADAR, signal processing, communication, sensing, etc.

- Devices and materials

Optical Phased Array

Faster & Lower Power

Larger & More Controllable

Optical Phased Array

Applications

Images a, b, and c from Internet

Optical Phased Array Communication and Computation Optical/Microwave Signal Processing Devices and Materials

$\textbf{Telecom}{\rightarrow} \textbf{Datacom}{\rightarrow} \textbf{Intrachip}$

Optical Phased Array Communication and Computation **Optical/Microwave Signal Processing** Devices and Materials

Optical Arbitrary Waveform Generation & Microwave Photonics

Optical/Microwave Signal Processing

- Optical AWG: delay and/or reshape optical pulses
- Microwave Photonics: generation and manipulation of RF signals using integrated photonics

Optical Phased Array Communication and Computation Optical/Microwave Signal Processing Devices and Materials

Backbones of Silicon Photonics: Materials & Devices

Optical Phased Array Communication and Computation Optical/Microwave Signal Processing Devices and Materials

Bragg Grating Array with Highly-Uniform Channel Spacing

• Integration with III-V gain for WDM

Jie Sun, et al, Opt. Lett., 38, pp. 4002-04 (2013)

Bright Future of Silicon Photonics

Optical Technology

CMOS Fabrication Techniques

Images from Internet

Silicon Photonics

- Silicon (and other compatible materials) as the material for photonics
- Accessible to well-developed CMOS processing technology

Backup Slides

- Silicon Photonic Devices

 Sampled Bragg Grating
 A Thermo-Optic Switch

 Silicon Photonic Process
 Phased Array Related
 - An Ultra-Small Bend
 - High-Order Interference
 - Phase/Intensity Noise in Phased Array
 - Continuously Steerable Phased Array

4 OAM Related

• Polarization of Tunable OAM

Sampled Bragg Grating A Thermo-Optic Switch

$\lambda/4$ -Shifted Bragg Grating Enabled by Sampling

$\lambda/4$ -shifted Bragg grating enabled by sampling

- Phase shift: $\Delta \phi = 2\pi \frac{\Delta L_2}{P}$ (Quarter-Wave: $\Delta \phi = \pi \rightarrow \Delta L_2 = \frac{P}{2}$)
- $P \sim 100 \mu m$, $\Delta L_2 \sim 50 \mu m \rightarrow$ Easy fabrication!

Sampled Bragg Grating A Thermo-Optic Switch

$\lambda/4$ -shifted Bragg Grating Enabled by Sampling

Relaxed fabrication requirement yet improved accuracy

• Interference lithography + contact lithography (1µm-resolution)

Jie Sun, C. W. Holzwarth, and H. I. Smith, IEEE PTL, 24, pp. 25-27 (2012)

Silicon Photonic Devices

OAM Related

Sampled Bragg Grating A Thermo-Optic Switch

An Optical Switch (Power Consumption P_{π})

Sampled Bragg Grating A Thermo-Optic Switch

An Optical Switch (Power Consumption P_{π})

An optical switch enabled by tunable phase shifter

- Light-doping: large resistance, low optical loss
- Heavy-doping: small resistance
- Long contact line: thermal isolation

Sampled Bragg Grating A Thermo-Optic Switch

An Optical Switch (Power Consumption P_{π})

Silicon Photonic Devices

licon Photonic Process Phased Array Related OAM Related Sampled Bragg Grating A Thermo-Optic Switch

An Optical Switch (Response Time τ)

Silicon Photonics

Fabrication: The CMOS-Compatible Si-Photonic Process

A customized CMOS-compatible Si-photonic process

- 300-mm SOI (220nm Si, 2μm BOX) line at 65-nm node using 193-nm optical immersion lithography
- Si (2 etches, 4 doping levels), 2 metal interconnections, Ge, SiNx, Er³⁺ (backend processing)

An Ultra-Small Bend High-Order Interference Phase/Intensity Noise in Phased Array Continuously Steerable Phased Array

A Ultra-Small Bend (2 μm)

Jie Sun

An Ultra-Small Bend High-Order Interference Phase/Intensity Noise in Phased Array Continuously Steerable Phased Array

A Ultra-Small Bend (2 μm)

Jie Sun

An Ultra-Small Bend High-Order Interference Phase/Intensity Noise in Phased Array Continuously Steerable Phased Array

High-Order Interference

Jie Sun, et al, IEEE JSTQE, 20(4), 2014

An Ultra-Small Bend High-Order Interference Phase/Intensity Noise in Phased Array Continuously Steerable Phased Array

Phase/Intensity Noise Tolerance

An Ultra-Small Bend High-Order Interference Phase/Intensity Noise in Phased Array Continuously Steerable Phased Array

Phase/Intensity Noise Tolerance

Jie Sun, et al, IEEE JSTQE, 20(4), 2014

Silicon Photonics

An Ultra-Small Bend High-Order Interference Phase/Intensity Noise in Phased Array Continuously Steerable Phased Array

Phase/Intensity Noise Tolerance

Silicon Photonic Devices An Ultra-Small Bend Silicon Photonic Process High-Order Interference Phased Array Related Continuously Steerable Phased Array

Continuously Steerable Phased Array

Continuously steerable

- Linear phase: $\varphi_m = m \cdot \frac{\sin(\theta)\Delta x}{k}$ θ : steering angle
- In-line phase shifter: simplified electrical control

Silicon Photonic Devices An Ultra-Small Bend Silicon Photonic Process High-Order Interference Phased Array Related Continuously Steerable Phased Array

Continuously Steerable Phased Array

An Ultra-Small Bend High-Order Interference Phase/Intensity Noise in Phased Array Continuously Steerable Phased Array

Fabricated Continuously Steerable Phased Array

Unit Cell

Continuously steerable array w/ inline heaters

• Unit cell: 16µm×16µm (5.6°, can be improved)

An Ultra-Small Bend High-Order Interference Phase/Intensity Noise in Phased Array Continuously Steerable Phased Array

Fabricated Continuously Steerable Phased Array

Continuously Tunable Phased Array

Unit Cell

Continueous Beam Steering

Continuously steerable array w/ inline heaters

- Unit cell: 16µm×16µm (5.6°, can be improved)
- Efficiency: 16.9mW per 2π phase shift per heater

An Ultra-Small Bend High-Order Interference Phase/Intensity Noise in Phased Array Continuously Steerable Phased Array

Fabricated Continuously Steerable Phased Array

Continuously Tunable Phased Array

Unit Cell

Continueous Beam Steering

• Speed: several tens of μs

Polarization of Tunable OAM

Polarization of Circular Array

Polarization of The Antenna Emission

•
$$\vec{E} = \begin{pmatrix} -\sin\theta\\\cos\theta \end{pmatrix} \cdot e^{j \cdot l\theta} = \frac{-j}{2} \left(e^{j(l-1)\theta} \cdot \begin{pmatrix} 1\\j \end{pmatrix} + e^{j(l+1)\theta} \cdot \begin{pmatrix} 1\\-j \end{pmatrix} \right)$$

• LHCP $(l-1)$ + RHCP $(l+1)$

