Si-Rib AWG : 40ch-100GHz

Definition of AWG Parameters

(b) After etching

Si-Rib AWG : 40ch-100GHz

(a) Configuration of rib-type waveguide

Electric Field Distribution

n1(EIM) = 3.2724 ~ 0.5 % error n0(EIM) = 2.9377 → nc = 3.2168 (EIM)

$$n_{c} = 3.2003$$
$$N_{c} = n_{c} - \lambda \frac{dn_{c}}{d\lambda} = 3.7796$$

n1(EIM) = 3.1547 ~ ~ 4.4 % error n0(EIM) = 2.2951 → nc = 3.2218 (EIM)

$$n_{c} = 3.0864$$
$$N_{c} = n_{c} - \lambda \frac{dn_{c}}{d\lambda} = 3.9794$$

(a) Electric field for TE mode

(b) Electric field for TM mode

Electric Field Distribution

 $w_{x1} = 0.7 \ \mu m \ \%, \ w_{x2} = 0.9 \ \mu m$

Position x (µm)

Electric Field Distribution

 $t = 0.25 \ \mu m, \ VV_{y} = 0.36 \ \mu m$

Eigen Value for Ex¹¹ Mode

Eigen Value for Ey¹¹ Mode

FEM Analysis of Parallel Waveguides

$$\kappa = \frac{(\beta_{even} - \beta_{odd})}{2} = \frac{(n_{even} - n_{odd})\pi}{\lambda}$$
$$P_{b}(z) = \sin^{2}(\kappa z)$$

 $L_{100\%} = L_{0dB} = \frac{\pi}{2\kappa} = \frac{\lambda}{2(n_{even} - n_{odd})}$

$$L_{50\%} = L_{-3dB} = \frac{\pi}{4\kappa} = \frac{\lambda}{4(n_{even} - n_{odd})}$$

$$ER = -30 \, dB$$

$$L_{-30dB} = \frac{1}{\kappa} \sin^{-1} \left\{ exp \left[\frac{ER \cdot \ell n(10)}{20} \right] \right\} = \frac{\lambda}{(n_{even} - n_{odd})\pi} \sin^{-1} \left\{ exp \left[\frac{ER \cdot \ell n(10)}{20} \right] \right\}$$

FEM Analysis of Parallel Waveguides

Core Center Separation = $3.0 \mu m$

Position x (Mm)

FEM Analysis of Parallel Waveguides

Core Center Separation = $3.0 \mu m$

Position x (□m)

The Minimum Core Center Separation

$$\kappa = \frac{\sqrt{2\Delta}}{a} \frac{u^2 w^2}{(1+w) v^3} \exp\left[-w\left(\frac{D}{a}-2\right)\right]$$

Si-Rib WG by EIM $a = 0.5 \ \mu m$ $\Delta = 0.097$ $\lambda_0 = 1.55 \ \mu m$ v = 2.921980 b = 0.826505 $D = 3.0 \ \mu m$ $\kappa = 2.45 \times 10^{-6} \ \mu m^{-1}$

<u>Si-Rib WG by FEM</u> D = 3.0 μ m Sprtn $\kappa = 1.97 \times 10^{-6} \mu m^{-1}$ CT = - 30 dB @ L = 16.1 mm

CT = -30 dB @ L = 12.9 mm

Phase Fronts in Array Waveguides

(a) Phase relation for $\lambda = \lambda_0$

(b) Phase relation for $\lambda < \lambda_0$

Interference Condition of AWG

Multi-beam Interference in the 2nd Slab Region of AWG

 x_{I}

(1) Interference condition

$$\beta_{s}(\lambda) \left(\frac{d_{1}}{f_{1}} x_{1} - \frac{d}{f} x \right) + \beta_{c}(\lambda) \Delta L = 2m\pi \quad (1)$$

$$\frac{n_c(\lambda)\Delta L}{\lambda} = m \quad (2) \quad \cdots \quad \text{for input/output positions satisfying} \quad \frac{d_1}{f_1} x_1 = \frac{d}{f} x_1$$
$$n_c(\lambda) = \beta_c(\lambda)/k \quad : \quad \text{Effective-index of arrayWG} \quad \left(k = 2\pi/\lambda = 2\pi v/c\right)$$
$$n_s(\lambda) = \beta_s(\lambda)/k \quad : \quad \text{Effective-index of slab} \quad \left(n_s = n_{eff}\right)$$

(2) Dispersion of focal point x for fixed input position x_1

$$\frac{\delta}{\delta k} \left[\text{left} - \text{hand side term of Eq.}(1) \right] = 0$$

$$\frac{\delta\beta_s}{\delta k} \left(\frac{d_1}{f_1} x_1 - \frac{d}{f} x \right) - \beta_s(\lambda) \frac{d}{f} \cdot \frac{\delta x}{\delta k} + \frac{\delta\beta_c}{\delta k} \Delta L = 0$$

Theory of AWG - 2

$$\frac{\delta x}{\delta k} = -\frac{\lambda}{k} \frac{\delta x}{\delta \lambda} = \frac{v}{k} \frac{\delta x}{\delta v} = \frac{N_c f \Delta L}{\beta_s d}$$
$$N_c = \frac{\delta \beta_c}{\delta k} = n_c - \lambda \frac{dn_c}{d\lambda} : \text{ Group index}$$
$$\frac{\delta x}{\delta v} = \frac{N_c f \Delta L}{n_s v d} \quad (3)$$

$$\frac{\delta x}{\delta \lambda} = -\frac{N_c f \Delta L}{n_s \lambda d} \quad (4)$$

(3) Free spectral range (FSR)

From Eq. (1) for fixed input/output positions x_1 and x

(4) Free spatial range

Spatial separation of the *m*-th and (m+1)-th focal positions for the same wavelength λ (fixed x_1)

$$\beta_{s}(\lambda) \left(\frac{d_{1}}{f_{1}} x_{1} - \frac{d}{f} x \right) + \beta_{c}(\lambda) \Delta L - 2m\pi = 0 \quad (1)$$

$$\beta_{s}\partial\lambda \int \frac{d}{f}x_{m} + 2m\pi = \beta_{s}\partial\lambda \int \frac{d}{f}x_{m+1} + 2\partial m + 1\int \pi$$

$$\downarrow$$

$$X_{FSR} = x_{m} - x_{m+1} = \frac{\lambda f}{n_{s}d} \qquad (6)$$

(5) Number of available channels

$$N_{ch} = \frac{X_{FSR}}{D} = \frac{\lambda f}{n_s d D} \qquad (7)$$

Light Focusing Properties for Center and Off-center Beams

(a) $\lambda = \lambda_{center}$

Design Procedure of AWG

Far-field Pattern from the Input Waveguide

ρ (**rad**)

Theoretical Crosstalk vs NTA ε : (BPM Calculation)

Crosstalk of AWG Caused by Fabrication Error

81

Defocusing (Crosstalk degradation)

Transmittance (dB)

with errors

no errors

Light focusing in 2nd slab region

Waveguide Layout for AWG Design

Equations to Determine AWG Configuration

(2N-1) equations for (2N+1) unknown values

 $\frac{\alpha, \quad L_{slab}}{\frac{L_{slab}}{2} - \left(f + Y_{fnl} + S_N\right)\cos\theta_l}$

$$R_N = \frac{\frac{1}{2} - (J + I_{fnl} + S_N) \cos \theta_N}{\sin \theta_N} \qquad (8)$$

$$R_{j} = \frac{\frac{L_{slab}}{2} - \left[f + Y_{fnl} + S_{N} + R_{N} \cdot \theta_{N} + (N - j)\frac{\Delta L}{2}\right]\cos\theta_{j}}{\sin\theta_{j} - \theta_{j} \cdot \cos\theta_{j}} \quad (j = 1 \sim N - 1) \quad (9)$$

$$S_{j} = S_{N} + \left(R_{N} \cdot \theta_{N} - R_{j} \cdot \theta_{j}\right) + (N - j)\frac{\Delta L}{2} \quad (j = 1 \sim N - 1) \quad (10)$$

Choose solution under the following conditions

 $Min(R_j) \ge R_{\min} \quad (\text{given by bending loss})$ $S_j \ge 0 \qquad (\text{taper length})$ Waveguide separation $\ge s_{\min} \quad (\text{given by mode coupling})$

Layout of Array Waveguides

Layout of Array Waveguides

Layout of AWG : Vernier Input WGs

Layout of AWG : Normal Output WGs

Principle of Vernier Center Wavelength Trimming

30-days Trial version

Absoft Pro Fortran : http://www.absoft.com/evalform.html

AutoCAD LT : http://usa.autodesk.com/adsk/servlet/oc/offer/form?siteID=123112&id=9247811

MathType : http://www.dessci.com/en/products/mathtype/trial.asp

How to use Pro Fortran

(1) Start Absoft Compiler \rightarrow Absoft Developer Tools Interface \rightarrow "No" \rightarrow New Project \rightarrow "Cancel"

(2) Configure → Set Default Options → "New" tab
F77 →
General → quiet
Compatibility → Fold to Upper Case
Miscellaneous → Promote REAL and COMPLEX
Format → Wide Format
Plug-ins → IMSL Library

" $OK" \rightarrow Save as "double-r8" \rightarrow "double-r8.gui" stored in [Absoft Work Folder] \rightarrow "Close"$

(Note I) Setting should be -q –N113 –W –N109

(Note II) An Instruction of IMSL Library is in [Documentation] ... MATH.pdf etc

How to use Pro Fortran

(3) Store "double-r8.gui" in → [Absoft70] → [BIN] → [Resources] → [IDE Resources]
 → [Settings]

(4) Prepare File with the Name "f.f"

Double Click "double-r8.gui" \rightarrow "No" \rightarrow Configure \rightarrow Set Options

Target Directory \rightarrow Click "..." \rightarrow C: \rightarrow [Absoft70] \rightarrow Click "Absoft Work Folder" \rightarrow "OK"

"Ctrl + F" → Double Click "f.f" → "Close" → Click "+" → "Ctrl + B" → "f.exe"

(5) "Ctrl + E" \rightarrow Program Executed \rightarrow Remove "f.f" \rightarrow "Close" \rightarrow Save changes to "double-r8.gui"?

 \rightarrow "Yes"

Mask Data Generation Procedure

(b) Generation of "Quadrangle"

(a) Overlap of Line's

DXF File Generation Procedure

(a) Arc in clockwise direction

(b) Arc in counterclockwise direction

Mask Company → Mask Minimum Division Angle

Minimum Division Angle

WG Type	R (μm)	∆θ (Deg)	$\Delta \alpha$ (rad)	R*∆α (μm)
H∆-PLC	2000 ~ 5000	0.1	0.0017	3.4 ~ 8.5
InP & Si-Rib	50 ~ 500	0.1	0.0017	0.085 ~ 0.85
Si-Wire	5	0.1	0.0017	0.0085

Rotation of the Cell

Chip Layout of AWG : 40ch-100GHz

 $X_{dev} = 5.4 \text{ mm}$ $Y_{dev} = 5.4 \text{ mm}$

Demux Properties of Si-Rib AWG : 20ch-200GHz

Crosstalk ~ -20 dB

Demux Properties of Si-Rib AWG : 40ch-100GHz N = 290, ΔL = 12.1 μ m, Lav = 1.43 mm Crosstalk ~ -18 dB - 10 - 20 Transmittance (dB) -18 dB - 30 - 40

Wavelength λ (nm)

1550

1555

1560

1545

1565

1535

1540

Test Waveguides

Test Radius of Curvature by S-Bends

Test Radius of Curvature by S-Bends

$$\begin{array}{l} S_{dc} = 21.2 \ \mu m \\ G_{ap} = 0.2 \ \mu m \ (Core \ edge \ separation) \\ S_{b} = 10.0 \ \mu m \\ Y_{3dB} = 10 \ \mu m \\ \textbf{R}_{b} = \textbf{20} \sim \textbf{220} \ \mu m \ (10 \ \mu m \ Step) \\ O_{fst} = 3.0/R_{b} \ \mu m \end{array}$$

$$S_{b} = \frac{S_{dc}}{2} \cdot \left(\frac{G_{ap}}{2} + a\right)$$
$$\theta_{b} = \cos^{-1}\left(1 - \frac{S_{b}}{2 \cdot R_{b}}\right)$$

Test Radius of Curvature by S-Bends

Test 3dB Directional Coupler

Test 3dB Directional Coupler

Test MMI 3dB Coupler

Test MMI 3dB Coupler

