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COBRA

Communication Technologies: 
Basic Research and Applications

COBRA staff

~25 scientific staff & technicians
~25 postdocs

50 PhD~50 PhD

Core
• Materials (HGF)
• Components (OED)p ( )
• Systems (ECO)

Other
• Radio Communications (CWSe)
• Electromagnetics (EM)• Electromagnetics (EM)
• Micro Electronics (MsM)
• Signal Processing (SPS)
• Functional Materials
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800 m2 cleanroom



Outline

• The Past / Moore’s law in Photonics
• The Future / 1 Generic Integration Technology
• The Future / 2 Nanophotonic Integration Technology
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Moore’s law for WDM PICs
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AWG demultiplexer

Meint Smit, Electronics Letters 1988
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Example of Photonic IC: 4λ OXC 
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Towards LSI: Infinera WDM circuits
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Moore’s law for WDM PICs
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What went wrong?

• Since 1990 worldwide more than 1 B$ invested in 
development of integration technologiesdevelopment of integration technologies

• Almost all research was application driven
• Therefore almost as many technologies as applications
• For most of them: market too small for payback of 

investments

• (By far too) many degrees of freedom
• many different materials and technologies
• many different component types
• many different wavelength ranges and applications
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The (only?) way out 

• Develop a limited number of generic wafer-scale g
integration technologies, that can support a broad 
range of functionalities and applications

• Move to a generic foundry model (as in CMOS)• Move to a generic foundry model (as in CMOS)
• Convergence of technologies
• Decouple design (IP) from technology (IP)p g ( ) gy ( )
• Set up libraries and tools for ASPIC design
• Organize training and design support for fabless users

• Work on market development 
(new applications)
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Outline

• The Past / Moore’s law in Photonics
• The Future / 1 Generic Integration Technology
• The Future / 2 Nanophotonic Integration Technology
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Generic Integration philosophy

Electronic integration
3 basic elements

Photonic integration
3 basic elements

WaveguidePWD
PWD ERMSOA

Phase control

Amplitude control

ϕERM

ΑSOA
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Photonic Integration 
with 3 basic building blocks (BB)

PWD ERMPWD SOAPWDPWD

shallow etch deep etch

ERMPWD

phase modulator

SOAPWD

optical amplifier

waveguide

phase modulator

amplitude modulator

optical amplifier

λ converter, ultrafast switch
curve

2x2 switch

λ converter, ultrafast switch

Mode-Locked Laser
AWG-demux

MMI-coupler WDM OXC multiwavelength laser
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Examples

optical crossconnectoptical crossconnect

WDM-TTD switch
multiwavelength laser

Cascaded WDM laser

optical crossconnect

tunable multiwavelength laser

l th t WDM i lpicosecond pulse laser

tunable multiwavelength laser
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wavelength converter WDM ring laserpicosecond pulse laser



New: A fast tunable AWG-laser
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A Generic Integration Platform

JePPIX:
Joint European Platform for InP-based Photonic 
Integration of Components and Circuits

JePPIX
Integration of Components and Circuits

Industrial partners: Bookham, CIP, Cedova, 
Alcatel-Thales III-V Lab, 
2t FhG HHI S diu2t, FhG-HHI, Svedice 

ASML, Aixtron, OPT 
Photonic CAD: Phoenix, Photon Design, 

Filarete
Universities: COBRA –TU/e, Cambridge, 

KTH, COM, CNRS
Coordination: COBRA

Step 1: Small-scale access to the COBRA process 
for research purposes (proof-of-concept)
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Step 2: Feasibility of an industrial foundry (EuroPIC)



Entry costs for different production models (1)

Vertical integrated fab
Cleanroom cost >100 M€
> 1 Mchips for chip cost < 100 €/chip

C t f dCustom foundry
cleanroom costs shared by all customers
custom process development cost > 3 M€custom process development cost > 3 M€
> 30,000 chips for chip cost < 100 €/chip
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Entry costs for different production models (2)

Generic foundry
• Cleanroom costs shared by all customers
• Process development costs sharedp
• Process qualification costs shared

• Cost of shared infrastructure for large volumes: a few €/mm2

• Entry cost reduction
• R&D time shortened by dedicated software design kit with accurate models 

for the building blocks
• R&D cost reduced by Multi-Project wafer Runs (MPR)
• chip testing costs reduced by building-block approach
• R&D cost < 300 k€, 1 trial < 100 k€ (interesting for SME’s)

> 3000 hi f hi t < 100 €/ hi• > 3000 chips for chip cost < 100 €/chip
• >  300 chips for chip cost < 1000 €/chip

• Develop generic packaging and testing approaches
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non-telecom applications

Skin analysis equipment
Optical Coherence Tomography

Compact 
Frequency comb-generators 

Fibre strain sensor for 
construction integrity monitoring

for metrology
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Outline

• Introduction
• Past / Moore’s law in Photonics
• Future / 1 Generic Integration Technology
• Future / 2 Nanophotonic Integration Technology
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Saturation?
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From analog to digital

Martin Hill et al., 
Nature, Vol. 432, 11 Nov. 2004, pp.206-209

Digital photonic flip-flop
based on
coupled micro-lasers

Dimensions < 20 x 40 μm2

Switching time < 15 ps
Switching energy < 6 fJSwitching energy < 6 fJ
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Track 2: Metallic and Plasmonic lasers

A BREAKTHROUGH
The world’s smallest electrically injected laser (diameter 250 nm)

small active volume means low power and high speed

Martin Hill et al., Nature Photonics, October 2007

Gold

InP

Ith = 6 μA @ 77K

Photonic Integration UCSB, 7 Nov 2008 27/31



Latest Results for MIM structures

• Most devices from 80-300 nm worked pulsed at 250K
• For ~300 nm semiconductor core size

room temperature (298K) operation (pulsed)

5
x 104 Run 6, Row 1 dev #14, 298K

room temperature (298K) operation (pulsed)
• Life time issues at higher temperatures
• Higher threshold current

But just beginning not optimized
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• Much room for improvement
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Record small MIM Devices

• rectangular pillars 3 and 6 micron long
• core width 80nm

d ~80nm to 
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Potential

100 nm

silver

InP

• Integration of more than 100,000 lasers on a chip
• Operating at speeds well beyond 1 THz

Superior to high-speed transistors 
for ultrafast signal processing
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Complexity of InP Photonic ICs?
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