Hybrid III-V/SOI Nanolasers

Fabrice Raineri^{1,2}

¹ Laboratoire de Photonique et Nanostructures – CNRS (Marcoussis)
 ² Université Paris Diderot – Paris VII

- Motivations of hybrid photonics and pursued approaches
- III-V/SOI nanophotonics platform
- Nanolasers efficiently coupled to SOI circuitry
- Hybrid memories and switches
- Conclusion and Future Work

- Motivations of hybrid photonics and state of the art
- III-V/SOI nanophotonics platform
- Nanolasers efficiently coupled to SOI circuitry
- Hybrid memories and switches
- Conclusion and Future Work

Motivations :

Convergence of µ-electronics & photonics

Photonics can help to overcome the limits of electronics, in speed and power consumption, for intra or inter-chip communication D.A.B. Miller, Proc. IEEE 97, 1166-1185 (2009)

CHALLENGES

- Deliver the necessary passive and active functionalities: low-loss waveguides, filters, sources, switches, detectors...
- Perform low power consumption and high speed: fJ activation energies, >10Gbits/s
- Small footprint for high density (10^4 - 10^5 of devices per mm²): < 100μ m²
- Integration with Si electronics and CMOS compatibility for cheap manufacturing

Motivations :

III-V semiconductors/Silicon hybrid structures

Combine the best of both materials for photonics

Pursued approaches for heterogeneous integration

III-V and Si in contact \rightarrow hybrid mode

UCSB/Intel

A. W. Fang et al, Materials today 10 (2007)

Edge-emitters, DFBs, SOAs, Racetrack lasers, detectors, modulators.... III-V and Si separated by a low index layer → evanescent coupling

IMEC/LETI/INL

J.V. Campenhout et al, Opt. Express 15, 6744 (2007)

µdisks lasers, wavelength converters, memories, detectors...

LET'S GO FOR "NANO"!

→Smaller footprint
→Better power efficiency
→Higher speed

- Motivations of hybrid photonics and state of the art
- III-V/SOI nanophotonics platform
- ightarrow General view
- \rightarrow PhC lasers properties
- Nanolasers efficiently coupled to SOI circuitry
- Hybrid memories and switches

General view of the hybrid structure

General view of the hybrid structure: passive level

General view of the hybrid structure: active level

PhC cavities

PHOTONIC CRYSTAL LASERS PROPERTIES

when we incorporate active materials (QDs or QWs) \rightarrow laser emission

2 types of PhC lasers

What is so special?

Rate equations model

 $\begin{aligned} & \tau_{rad} \ , \ \tau_{Nrad} \ \ \ \ carrier \ lifetimes associated with radiative and non-radiative recombinations \\ & \Gamma \ confinement \ factor \ & \beta \ \ coupling \ of \ spontaneous \ emission \ into \ the \ lasing \ mode \\ & \tau_p \ \ photon \ lifetime \ & v_g \ \ group \ velocity \\ & \sigma \ \ differential \ gain \ & N_{tr} \ \ carrier \ density \ @ \ transparency \end{aligned}$

What is so special with PhC nanolasers?

• High Q and small modal volumes \rightarrow threshold lowering (fJ/bit!)

$$I_{th} = \frac{q}{\beta \tau_p} \left(1 + \frac{N_{tr} \beta V \tau_p}{\tau_{rad}} \right) \left(1 + \frac{\tau_{rad}}{\tau_{Nrad}} \right)$$

M. Notomi et al, Nat. Phot. 4, 648-654 (2010)

• β coupling of spontaneous emission is close to 1!

→ Spatial redistribution of spontaneous emission into the useful mode due to suppression of other modes (band gap), and Purcell effect

What is so special with PhC nanolasers?

• β coupling of spontaneous emission is close to 1!

 \rightarrow Spatial redistribution of spontaneous emission into the useful mode due to suppression of other modes (band gap), and Purcell effect

What is special with PhC nanolasers?

- β coupling of spontaneous emission is close to 1!
- → Threshold-less lasers?

From G. Bjork et al, Phys. Rev. A, 50 1675-80 (1994)

ABORATOIRE

NANOSTRUCTURES

dépasser les frontières

What is special with PhC nanolasers?

- β coupling of spontaneous emission is close to 1!
- 104 104 "Nanolasers" "edge emitters" Intensity modulation response 10^{3} 50 mA Intensity modulation response 10^{-2} 10^{2} 10^{2} 20 mA 100 mA 10⁻²mA 10 10 10-1 1 1 $\beta = 10^{-5}$ $\beta = 1$ 10-1 10.1 $= 10^{12} s^{-1}$ $= 10^{12} s^{-1}$ 10-2 10-4 10^{.2} 10 mA 10-3 10⁻⁵mA $\tau_{sp} = 10^{-9} s$ 10⁻⁹ s 10-3 10-3 $\tau_m =$ 10^{-4} 10 $\tau_m > \tau_m$ $\tau_{nr} > \tau_{sp}$ 10-5 $N_0 = 10^{18} \, cm^{-3}$ $N_0 = 10^{18} \, cm^{-3}$ 10-2 10-6 $V = 10^{-15} cm^{-3}$ $V = 10^{-12} cm^{-3}$ 10 10-7 10 10-2 10-2 10^{2} 10⁻¹ 10.3 10-1 10^{2} 10^{3} 10-3 10 10 103 1 1 Frequency (GHz) Frequency (GHz) from G. Bjork et al, JQE 27, 2386-96 (1991) \rightarrow 100GHz modulation possible!

→ Very fast dynamics!

PhC laser: Dynamics

PhC laser: Dynamics

Some experiments on nanocavities

H. Altug, Nat. Phys. 2, 484-88 (2006) 950nm Nanocavity laser

Figure 8 (online color at: www.lpr-journal.org) Large-signal lasing response in QW-driven PC laser. (a) Response to excitation pulses at (i) 9 ± 0.5 and (ii) 15 ps. (b) Excitation pulse train created by etalon setup. Imperfect mirror arrangement causes an exponential decrease in pulse power and only the first three pulses exceed the photonic crystal lasing threshold. (c) Lasing response delay.

S. Matsuo et al, Opt. Express 19, 2242-2250 (2011)

1550nm Nanocavity laser

Fig. 6. (a) Experimental setup for direct modulation. Eye diagrams for (b) 15 Gbit/s and (c) 20 Gbit/s NRZ signals.

General view of the hybrid structure: coupling scheme

→ SMALL FOOTPRINT, ENERGY EFFICIENT AND HIGH SPEED LASERS ON SILICON!

- Motivations of hybrid photonics and state of the art
- III-V/SOI nanophotonics platform
- Nanolasers efficiently coupled to SOI circuitry
- →Evanescent wave coupling
- → Fabrication
- → Experiments
- Hybrid memories and switches

Different type of structures

Different type of structures

EVANESCENT WAVE COUPLING

Evanescent coupling

Evanescent coupling: field overlap

Evanescent coupling: phase matching

Impact on Fabrication

Alignment error should be at approximatively 10% of the typical scales Accurate control of dimensions necessary for phasematching condition

FABRICATION TECHNOLOGY

1-Adhesive bonding

Typical bonding InP layer on patterned SOI:

Achievements **Bare SOI waveguides Bonded InP substrate** - few cm² dyes of InP FIBCOUP AREA - BCB thickness <100nm - Accurate control of the thickness by SiO2 layer

- High Yield

deposition on InP

dépasser les frontières

LABORATOIRE NANOSTRUCTURES

InP removal

Alignment < 30nm \rightarrow control of evanescent coupling

T. J. Karle et al, J. Appl. Phys 107, 063103 (2010).

EXPERIMENTAL DEMONSTRATION

Explored sample: Wire cavity

A. R. Zain, Optics Express, 16 (2008)

Assets :

- High Q/V on substrate (Q ~ 10^5 demonstrated on SOI)
- Very small footprint (3μm²)

Y. Halioua et al., J. Opt. Soc. Am. B, 27, 2146-2150 (2010)

Laser emission

What about coupling efficiency ?

Coupling between nanolaser and waveguide

Laser/waveguide system: intra-cavity field temporal evolution when injected:

$$\frac{dE_{cav}}{dt} = \left(j\omega_0 - \frac{1}{\tau_c} - \frac{1}{\tau_0} + \frac{1}{\tau_g}\right)E_{cav} + \sqrt{\frac{1}{\tau_c}}\varepsilon_{in}$$

Si Waveguide

absorption/gain « losses »

$$\frac{1}{\tau_{g}} = \frac{+\Gamma v_{g} \sigma (N - N_{tr})}{2}$$

 \rightarrow Tunable parameter

Transmission of an incoming wave in the waveguide

$$T = \left| \frac{\mathbf{\epsilon}_{out \ forward}}{\mathbf{\epsilon}_{out \ input}} \right|^2$$

Index changes with carrier population (blue-shift)

Index changes with carrier population (blue-shift)

Minimum of transmission when gain compensates intrinsic losses

measurement for cavities coupled to waveguides :

- with various widths
- for 3 different separations layer thicknesses.

Coupling is optimal when overlap in the k-space between waveguide mode and cavity mode is the highest.

Uncoupled cavity quality factor Q₀ is necessary to retrieve η

Standard rate equations for QWs laser are used to fit L-L curve with 2 free variables:

> β factor Photon-lifetime

\rightarrow 10000<Q₀<30000

Coupling efficiency

 \rightarrow very efficient way to interface PhC cavities

- Motivations of hybrid photonics and state of the art
- III-V/SOI nanophotonics platform
- Nanolasers efficiently coupled to SOI circuitry
- Hybrid memories and switches
- →Bistable injected lasers
- →10Gbits/s switches
- Conclusion and Future Work

Operation based on active material

III-V quantum wells are embedded as active medium

n and α (or g) are dependent on intensity

dispersive nonlinearity optical switching, bistability

F. Raineri et al, Opt. Lett. 30, 64 (2005)

absorption/gain nonlinearity

amplification, laser emission, bistability

F. Raineri et al, Appl. Phys. Lett. 86, 091111 (2005)

Optical Bistability through injection locking

Optical Bistability of injected PhC laser

What if we inject a red-shifted ($\lambda_{\rm inj}$) external laser in free running laser state ($\lambda_{\rm 0}$) ?

Optical Bistability of injected PhC laser What if we inject a red-shifted (λ_{ini}) external laser in free running laser state (λ_0) ? Light intensity ght injectior injection intensity Wavelength Wavelength \rightarrow as injected power is \rightarrow carrier density changes through stimulated emission increased, laser is locked at λ_{ini} $\rightarrow\lambda_{_{0}}\text{=}\lambda_{_{ini}}$ and injected intracavity intensity is higher

Hysteresis cycle

Dynamics determined by laser dynamics \rightarrow measured to be faster than 50ps

ULTRAFAST SWITCHING

Ultrafast all-optical switching

Ultrafast all-optical switching

Ultrafast switching

Reduction of carrier lifetime using surface InGaAs QW and material patterning

Ultrafast switching

Measurements

Transmission characterisation 1,4 Transmitted signal (arb. units) 1,2-400nm SOI wire 1,0-0,8-Q=2500 0,6-0.4 pump& 0,2probe 0.0-1,52 1.54 1.56 1,50 1.58 1.60 wavelength (µm) \rightarrow induced blue shift of the resonant by the pump

→ 12ps carrier lifetime!→ Switching energy of 40fJ!

Quasi degenerate pump-probe experiment with balanced heterodyne detection

62

10Gbits/s Wavelength conversion

Conclusion

Future work

French National Agency for Research Project

PROWOC

The actors

Alexandre Bazin Yacine Halioua

Rémy Braive

Tim Karle

Rama Raj

Isabelle Sagnes

Paul Monnier

Fabrice Raineri

