

Hybrid Si/III-V Lasers with Adiabatic Coupling

B. Ben Bakir CEA, LETI, Minatec Campus Grenoble, France

A laser on silicon?

- Silicon (Ge, Si-nc+Er...) is a poor light emitter → No integrated & electrically driven laser sources achievable in the shortmedium term
- III-V materials exhibit excellent laser properties:
 - Direct growth of III-V materials has been studied for decades, but no convincing results up to now
 - Flip-chip bonding of lasers is a mature but rather expensive technology.
 Less flexibility in the laser design

Heterogeneous integration by direct bonding:

offers the best compromise between performances/ functionality/ manufacturability

1. Direct bonding on Si

- Direct bonding of InP wafers on SOI without oxide layer
- Si waveguide / mode profile
 - Invariant along Z-direction
 - Mode mainly concentrated in Si-Wg (~70%)
- QWs confinement factor (~3%, 9 QWs)
- Integration with other active components
 (Si-modulators, Ge photodetectors)

UCSB/INTEL

2. Encapsulation/Planarization/Bonding

- Different Si waveguide heights, widths
 Integration with other active components (Si-modulators, Ge photodetectors)
- Mode engineering along Z-direction
 - QWs confinement factor (~13%, 5 QWs)
 - Coupling efficiency \rightarrow Si-wg: >95% (tapers)

- Direct bonding of IIIV (InP) wafers on SOI without SiO2 spacing layer
- Si waveguide / mode profile

leti

- Invariant along Z-direction
- Mode mainly concentrated in Si-Wg (~70%)
- QWs confinement factor (~3%, 9 QWs)
- © Integration with other active components

(Si-modulators, Ge photodetectors)

UCSB/INTEL

2. Encapsulation/Planarization/Bonding

- Different Si waveguide heights, widths
 Integration with other active components (Si-modulators, Ge photodetectors)
- Mode engineering along Z-direction
 - QWs confinement factor (~13%, 5 QWs)
 - Coupling efficiency \rightarrow Si-wg: >95% (tapers)

1. Direct bonding on Si

- Direct bonding of InP wafers on SOI without oxide layer
- Si waveguide / mode profile
 - Invariant along Z-direction
 - Mode mainly concentrated in Si-Wg (~70%)
- QWs confinement factor (~3%, 9 QWs)
- Integration with other active components(Si-modulators, Ge photodetectors)

UCSB/INTEL

2. Encapsulation/Planarization/Bonding

- Different Si waveguide heights, widths
 - Integration with other active components (Si-modulators, Ge photodetectors)
- Mode engineering along Z-direction
 - QWs confinement factor (~13%, 5 QWs)
 - Coupling efficiency \rightarrow Si-wg: >95% (tapers)

- Direct bonding of InP wafers on SOI without oxide layer
- Si waveguide / mode profile

leti

- Invariant along Z-direction
- Mode mainly concentrated in Si-Wg (~70%)
- QWs confinement factor (~3%, 9 QWs)
- Integration with other active components
 (Si-modulators, Ge photodetectors)

UCSB/INTEL

2. Encapsulation/Planarization/Bonding

- Different Si waveguide heights, widths
 Integration with other active components (Si-modulators, Ge photodetectors)
- Mode engineering along Z-direction
 - QWs confinement factor (~13%, 5 QWs)
 - Coupling efficiency \rightarrow Si-wg: >95% (tapers)

Fabry-Pérot lasers

A. W. Fang et al. Opt. Express (2006).

- F-P cavity:
 - 860μm
 - ~30 % Si-to-air facet reflection
- Confinement factors:

Γ_{si}=75%

- I_{th} =65mA, P_{max} ~1.8mW @ 15°C (Single sided fiber coupled output power)
- Threshold voltage=2V
- Operating @ 40°C

Fabry-Pérot lasers (@ 1.3µm)

5.00 kV 3.0 2934x

TLD 6.7 1

Use poly-silicon thermal shunts to reduce the thermal impedance by 20%

SiO,

DFB lasers

A. W. Fang et al. Opt. Express (2008).

- 200um gain section + 2 x 80um III-V taper
- Confinement factors:
 - Γ_{QWs}=5.2%
 - Γ_{si}=59.2%
- → k=240cm⁻¹ (index perturbation is located near the center of the optical mode)

- I_{th} =25mA, P_{max} >4mW @ 10°C (Output power measured from both sides)
- SMSR=50dB

DBR lasers

A. W. Fang et al. IEEE PTL(2008).

- 400um gain section + 2 x 80um III-V taper
- Confinement factors:

- Mode hoping
- I_{th} =65mA, P_{max} ~11mW @ 15°C (integrating sphere at the front mirror)
- SMSR=50dB
- DML: Modulation bandwidth~3GHz

1. Direct bonding on Si

- Direct bonding of InP wafers on SOI without oxide layer
- Si waveguide / mode profile
 - Invariant along Z-direction
 - Mode mainly concentrated in Si-Wg (~70%)
- QWs confinement factor (~3%, 9 QWs)
- Integration with other active components(Si-modulators, Ge photodetectors)

UCSB/INTEL

2. Encapsulation/Planarization/Bonding

- Different Si waveguide heights, widths
 Integration with other active components
 - (Si-modulators, Ge photodetectors)
- Mode engineering along Z-direction
 - QWs confinement factor (~13%, 5 QWs)
 - Coupling efficiency \rightarrow Si-wg: >95% (tapers)

Architecture

- Gain \rightarrow III-V active waveguide
- Si-circuit supports all optical functions

Adiabatic transition III-V \rightarrow Si

Mode transformation:

Adiabaticity criterion

- Universal criterion for designing adiabatic mode transformers
 - Criterion relates ε
 - The shortest possible length of an adiabatic mode transformer
 - Taper shape:

$$\begin{bmatrix} W_{Si}(z) = f(\gamma(z)) \\ \gamma(z) = \frac{\delta(z)}{\kappa_{z_0}} = \tan\left[\arcsin\left(2\kappa_{z_0} \varepsilon^{1/2}(z-z_0)\right)\right] \end{bmatrix}$$

- δ: mismatch of propagation constants between the individual uncoupled waveguide modes
- z_0 : phase matching point (δ =0)
- κ_{z0}: coupling strength between waveguides at the phase matching point
- ε: fraction of power scattered in the unwanted supermode (odd mode)

γ (z)-shaped adiabatic taper

- ε~2%, Lc_{min}=100μm
- Taper length >80µm:
 - η>94%

- Robust design:
 - Lc=100μm:
 - $\Delta W_{si} = \pm 50 \text{nm} \rightarrow \eta > 90\%$

F-P cavity: broadband DBRs

F-P cavity: broadband DBRs

- Back mirror:
 - R~90%
 - Δλ >300nm
- Front mirror:
 - R~50%
 - T~40%

leti

2 1 Z (µm) 0 -1 -2 -3 12 -2 0 2 6 8 10 4 X (μm)

Fiber-coupler

- Period=590nm
- Etch depth= 125nm

Fiber-coupler

- Upwards radiated power
 - R_p>70%, Δλ >160nm
 - θ=45°
- Coupling to MMF ~60%

Si-waveguide fabrication

200mm SOI wafer: 500nm-Si / 2µm-BOX

- Surface grating coupler: hard mask/litho/partial etching (125nm)/stripping
- Waveguides and tapers: hard mask/litho/partial etching (250nm)/stripping
- Mesas + Bragg reflectors: hard mask/litho/full etching (500nm)/stripping
- SiO2 encapsulation and planarization by CMP (100nm)

Integration

- Wafer-to-wafer bonding
- Die-to-wafer bonding
- Die-to-wafer bonding (with a support handle)
- Hybrid SiO₂/Polymer bonding

Molecular bonding

Wafer-to-wafer bonding

- 2" InP wafer(100nm thick SiO2 spacing layer)
- Epilayer heterostructure of 3μm-thick
- Bonding yield of 95%

2" InP heterostructure bonded on processed SOI after substrate removal

Optical microscope image (automatic stitching) showing interfacial defects

Wafer-to-wafer bonding

Die-to-wafer bonding

Bonding yield > 85%

Die-to-wafer bonding (support handle)

- Use of support handle
 - Collective process
 - Possibility of precise alignment
 - High yield (>80%)
 - \rightarrow Under optimization

Support handle wafer with predefined places

Polymer bonding

Bonding yield of 80%

SEM cross sectional image of III-V structure bonded above Si waveguide with BCB

III-V waveguide definition

Partial dry etching: RIE CH4/H2

Si circuits
 After bonding/metallization

leti

Ni/AuGe/Ni/Au: Rc < $10^{-6} \Omega.cm^{-2}$

Integrating sphere

- Low reflectivity side (front mirror)
- Pout>16mW @15°C
- Pout>1.5mW @60°C

Below threshold

Above threshold

- Temperature dependence of laser threshold current (pulsed)
 T₀=80°C (I=I₀ exp [T/T₀])
- Temperature dependence of lasing wavelength (CW) dλ/dT=0.045nm/ °C

Direct modulation

- Modulation Bandwidth ~6GHz (RT)
- Eye diagram for 5Gb/s modulation: ER~ 4dB

Integrated Si/III-V racetrack laser, photodetector and waveguide-to-fiber surface grating coupler

III-V hterostructure, coupling scheme= F-P laser

leti

• Cavity: Broadband DBRs \rightarrow Si racetrack + directional coupler

Photodetector (CW) + Surface grating coupler (CCW) at both ends

- Laser:
 - CW operation @ RT
 - I_{th}: 30 mA

•
$$\mathscr{P}_{_{fiber}}$$
 ~ 3 mW

- **Photodetector:**
 - $I_{dark} \simeq 1 nA$
 - Max. responsivity @ -2V

20mA

🗆 40mA

- 30mA

50mA

- Mode hoping between CW/CCW modes
- Directional "flips"
 - Jumps in the lasing wavelength (2nm)
 - Small thermal drift between switches
- \rightarrow External ASE light source for unidirectional lasing

1.1

1.0

0,9

Laser dive current:

- 100mA

130mA 138mA

Perspectives

- Exploration of new designs/concepts
 - DFB, narrowband DBRs
 - Slow-wave structures
 - Photonic crystals, double-racetrack....

leti

Vernier effect

Slow wave structure or Photonic crystals

Perspectives

- Hybrid Si/III-V Double Photonic Crystals Reflectors VCSELS
 - Vertical &In-Plane Emission
 - Adiabatic couplers

First demonstration of optically pumped Hybrid double Ph.C VCSELs:

ThC6 15.00 - 15.15

CMOS-Compatible Integration of III-V VCSELs Based on Double Photonic Crystal Reflectors, C. Sciancalepore, Institut des Nanotechnologies de Lyon, Ecully, France, B. Ben Bakir, Commissariat à l'Énergie Atomique, Grenoble, France, X. Letartre, Institut des Nanotechnologies de Lyon, Ecully, France, N. Olivier, Commissariat à l'Énergie Atomique, Grenoble, France, C. Seassal, Institut des Nanotechnologies de Lyon, Ecully, France, D. Bordel, Commissariat à l'Énergie Atomique, Grenoble, France, P. Rojo-Romeo, P. Regreny Institut des Nanotechnologies de Lyon, Ecully, France, J.-M. Fedeli, Commissariat à l'Énergie Atomique, Grenoble, France, P. Rojo-Romeo, P. Regreny Institut des Nanotechnologies de Lyon, Ecully, France, J.-M. Fedeli, Commissariat à l'Énergie Atomique, Grenoble, France and P. Viktorovitch, Institut des Nanotechnologies de Lyon, Ecully, France

Perspectives

Improve performances

- Threshold, external efficiency (cavity design, current confinment)
- Extend the operating T° range up to 80°C
- Development of new functionalities
 - Wide tunability over the C-band (30nm)
 - multi-λ transmitter module (hybrid laser+ Si-modulator+Si-multiplexer)
- Integration with other optical and electrical functions, packaging

Integrated transceivers on CMOS

Thank you for your attention.

Group IV Photonics | 15 September 2011 | 42 © CEA. All rights reserved

200mm- Fully CMOS compatible process

Hybrid F-P lasers

leti

Hybrid Racetrack lasers

